It Takes a Genome


Book Description

Human beings have astonishing genetic vulnerabilities. More than half of us will die from complex diseases that trace directly to those vulnerabilities, and the modern world we’ve created places us at unprecedented risk from them. In It Takes a Genome, Greg Gibson posits a revolutionary new hypothesis: Our genome is out of equilibrium, both with itself and its environment. Simply put, our genes aren’t coping well with modern culture. Our bodies were never designed to subsist on fat and sugary foods; our immune systems weren’t designed for today’s clean, bland environments; our minds weren’t designed to process hard-edged, artificial electronic inputs from dawn ‘til midnight. And that’s why so many of us suffer from chronic diseases that barely touched our ancestors. Gibson begins by revealing the stunningly complex ways in which multiple genes cooperate and interact to shape our bodies and influence our behaviors. Then, drawing on the very latest science, he explains the genetic “mismatches” that increasingly lead to cancer, diabetes, inflammatory and infectious diseases, AIDS, depression, and senility. He concludes with a look at the probable genetic variations in human psychology, sharing the evidence that traits like introversion and agreeableness are grounded in equally complex genetic interactions. It Takes A Genome demolishes yesterday’s stale debates over “nature vs. nurture,” introducing a new view that is far more intriguing, and far closer to the truth. See how broken genes cause cancer Meet the body’s “genetic repairmen”—and understand what happens when they fail The growing price of the modern lifestyle Why one-third of all Westerners have obesity, Type 2 diabetes, or other signs of “metabolic syndrome” The Alzheimer’s generation Why some of us are predisposed to dementia What’s really normal: the deepest lessons of the human genome The remarkable diversity of physical and emotional “normality”




It Takes a Genome


Book Description

Human beings have astonishing genetic vulnerabilities. More than half of us will die from complex diseases that trace directly to those vulnerabilities, and the modern world we've created places us at unprecedented risk from them. In It Takes a Genome, Greg Gibson posits a revolutionary new hypothesis: Our genome is out of equilibrium, both with itself and its environment. Simply put, our genes aren't coping well with modern culture. Our bodies were never designed to subsist on fat and sugary foods; our immune systems weren't designed for today's clean, bland environments; our minds weren't designed to process hard-edged, artificial electronic inputs from dawn 'til midnight. And that's why so many of us suffer from chronic diseases that barely touched our ancestors. Gibson begins by revealing the stunningly complex ways in which multiple genes cooperate and interact to shape our bodies and influence our behaviors. Then, drawing on the very latest science, he explains the genetic "mismatches" that increasingly lead to cancer, diabetes, inflammatory and infectious diseases, AIDS, depression, and senility. He concludes with a look at the probable genetic variations in human psychology, sharing the evidence that traits like introversion and agreeableness are grounded in equally complex genetic interactions. It Takes A Genome demolishes yesterday's stale debates over "nature vs. nurture," introducing a new view that is far more intriguing, and far closer to the truth. See how broken genes cause cancer Meet the body's "genetic repairmen"--and understand what happens when they fail The growing price of the modern lifestyle Why one-third of all Westerners have obesity, Type 2 diabetes, or other signs of "metabolic syndrome" The Alzheimer's generation Why some of us are predisposed to dementia What's really normal: the deepest lessons of the human genome The remarkable diversity of physical and emotional "normality"




The Deeper Genome


Book Description

Mapping the human genome proved to be just the beginning in understanding our genes, what makes us human, and how we can use the knowledge to cure inherited diseases. John Parrington describes an emerging picture of our genome, in 3D, with many non-gene players and environmental influences, that is far more complex and subtle than we ever imagined.




The Genome Odyssey


Book Description

In The Genome Odyssey, Dr. Euan Ashley, Stanford professor of medicine and genetics, brings the breakthroughs of precision medicine to vivid life through the real diagnostic journeys of his patients and the tireless efforts of his fellow doctors and scientists as they hunt to prevent, predict, and beat disease. Since the Human Genome Project was completed in 2003, the price of genome sequencing has dropped at a staggering rate. It’s as if the price of a Ferrari went from $350,000 to a mere forty cents. Through breakthroughs made by Dr. Ashley’s team at Stanford and other dedicated groups around the world, analyzing the human genome has decreased from a heroic multibillion dollar effort to a single clinical test costing less than $1,000. For the first time we have within our grasp the ability to predict our genetic future, to diagnose and prevent disease before it begins, and to decode what it really means to be human. In The Genome Odyssey, Dr. Ashley details the medicine behind genome sequencing with clarity and accessibility. More than that, with passion for his subject and compassion for his patients, he introduces readers to the dynamic group of researchers and doctor detectives who hunt for answers, and to the pioneering patients who open up their lives to the medical community during their search for diagnoses and cures. He describes how he led the team that was the first to analyze and interpret a complete human genome, how they broke genome speed records to diagnose and treat a newborn baby girl whose heart stopped five times on the first day of her life, and how they found a boy with tumors growing inside his heart and traced the cause to a missing piece of his genome. These patients inspire Dr. Ashley and his team as they work to expand the boundaries of our medical capabilities and to envision a future where genome sequencing is available for all, where medicine can be tailored to treat specific diseases and to decode pathogens like viruses at the genomic level, and where our medical system as we know it has been completely revolutionized.




It Takes a Genome


Book Description

This is the eBook version of the printed book. If the print book includes a CD-ROM, this content is not included within the eBook version. Human beings have astonishing genetic vulnerabilities. More than half of us will die.




Ancestors in Our Genome


Book Description

Geneticist Eugene Harris presents us with the complete and up-to-date account of the evolution of the human genome.




Genomics and Personalized Medicine


Book Description

In 2001 the Human Genome Project succeeded in mapping the DNA of humans. This landmark accomplishment launched the field of genomics, the integrated study of all the genes in the human body and the related biomedical interventions that can be tailored to benefit a person's health. Today genomics, part of a larger movement toward personalized medicine, is poised to revolutionize health care. By cross-referencing an individual's genetic sequence -- their genome -- against known elements of "Big Data," elements of genomics are already being incorporated on a widespread basis, including prenatal disease screening and targeted cancer treatments. With more innovations soon to arrive at the bedside, the promise of the genomics revolution is limitless. This entry in the What Everyone Needs to Know series offers an authoritative resource on the prospects and realities of genomics and personalized medicine. As this science continues to alter traditional medical paradigms, consumers are faced with additional options and more complicated decisions regarding their health care. This book provides the essential information everyone needs.




A Life Decoded


Book Description

The triumphant memoir of the man behind one of the greatest feats in scientific history Of all the scientific achievements of the past century, perhaps none can match the deciphering of the human genetic code, both for its technical brilliance and for its implications for our future. In A Life Decoded, J. Craig Venter traces his rise from an uninspired student to one of the most fascinating and controversial figures in science today. Here, Venter relates the unparalleled drama of the quest to decode the human genome?a goal he predicted he could achieve years earlier and more cheaply than the government-sponsored Human Genome Project, and one that he fulfilled in 2001. A thrilling story of detection, A Life Decoded is also a revealing, and often troubling, look at how science is practiced today.




The $1,000 Genome


Book Description

In 2000, President Bill Clinton signaled the completion of the Human Genome Project at a cost in excess of $2 billion. A decade later, the price for any of us to order our own personal genome sequence--a comprehensive map of the 3 billion letters in our DNA--is rapidly and inevitably dropping to just $1,000. Dozens of men and women--scientists, entrepreneurs, celebrities, and patients--have already been sequenced, pioneers in a bold new era of personalized genomic medicine. The $1,000 genome has long been considered the tipping point that would open the floodgates to this revolution. Do you have gene variants associated with Alzheimer's or diabetes, heart disease or cancer? Which drugs should you consider taking for various diseases, and at what dosage? In the years to come, doctors will likely be able to tackle all of these questions--and many more--by using a computer in their offices to call up your unique genome sequence, which will become as much a part of your medical record as your blood pressure.




Genomics


Book Description

A unique exploration of the principles and methods underlying the Human Genome Project and modern molecular genetics and biotechnology-from two top researchers In Genomics, Charles R. Cantor, former director of the Human Genome Project, and Cassandra L. Smith give the first integral overview of the strategies and technologies behind the Human Genome Project and the field of molecular genetics and biotechnology. Written with a range of readers in mind-from chemists and biologists to computer scientists and engineers-the book begins with a review of the basic properties of DNA and the chromosomes that package it in cells. The authors describe the three main techniques used in DNA analysis-hybridization, polymerase chain reaction, and electrophoresis-and present a complete exploration of DNA mapping in its many different forms. By explaining both the theoretical principles and practical foundations of modern molecular genetics to a wide audience, the book brings the scientific community closer to the ultimate goal of understanding the biological function of DNA. Genomics features: * Topical organization within chapters for easy reference * A discussion of the developing methods of sequencing, such as sequencing by hybridization (SBH) in which data is read through words instead of letters * Detailed explanations and critical evaluations of the many different types of DNA maps that can be generated-including cytogenic and restriction maps as well as interspecies cell hybrids * Informed predictions for the future of DNA sequencing