Iterated Maps on the Interval as Dynamical Systems


Book Description

Iterations of continuous maps of an interval to itself serve as the simplest examples of models for dynamical systems. These models present an interesting mathematical structure going far beyond the simple equilibrium solutions one might expect. If, in addition, the dynamical system depends on an experimentally controllable parameter, there is a corresponding mathematical structure revealing a great deal about interrelations between the behavior for different parameter values. This work explains some of the early results of this theory to mathematicians and theoretical physicists, with the additional hope of stimulating experimentalists to look for more of these general phenomena of beautiful regularity, which oftentimes seem to appear near the much less understood chaotic systems. Although continuous maps of an interval to itself seem to have been first introduced to model biological systems, they can be found as models in most natural sciences as well as economics. Iterated Maps on the Interval as Dynamical Systems is a classic reference used widely by researchers and graduate students in mathematics and physics, opening up some new perspectives on the study of dynamical systems .







Sharkovsky Ordering


Book Description

This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.




Iteration Theory - Proceedings Of The European Conference


Book Description

Iteration theory has its roots in the operation of substituting functions into itself. This has led to questions like that of the behaviour of functions by repeating this substitution and when the number of iterations tends to infinity. The terms 'orbit' and 'chaos' appropriately describe this behaviour. Dynamical systems and the theory of functional equations play important roles in this field.




Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Hybrid Systems: Computation and Control, HSCC 2008, held in St. Louis, MO, USA, in April 2008. The 42 revised full papers and 20 revised short papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers focus on research in embedded, reactive systems involving the interplay between symbolic/switching and continuous dynamical behaviors and feature the latest developments of applications and theoretical advancements in the design, analysis, control, optimization, and implementation of hybrid systems, with particular attention to embedded and networked control systems.




Collected Papers of John Milnor


Book Description




Nonlinear Dynamics and Time Series


Book Description

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This editionincludes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these threenew chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings. This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents theproceedings of a four-day workshop entitled ''Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences'' held at the Centre de Recherches Mathematiques (CRM) in Montreal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data. The editors and peer reviewers of this work have attempted to minimize the problems ofmaintaining communication between the different scientific fields. The result is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics and new methodology and open data analysis problems in nonlinear dynamicsthat might find their way into the toolkits and research interests of statisticians. Features: A survey of state-of-the-art developments in nonlinear dynamics time series analysis with open statistical problems and areas for further research. Contributions by statisticians to understanding and improving modern techniques commonly associated with nonlinear time series analysis, such as surrogate data methods and estimation of local Lyapunov exponents. Starting point for both scientists andstatisticians who want to explore the field. Expositions that are readable to scientists outside the featured fields of specialization. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario,Canada).




Ergodic Theory and Related Topics III


Book Description

The purpose of the conference was to represent recent developments in measure theoretic, differentiable and topological dynamical systems as well as connections to probability theory, stochastic processes, operator theory and statistical physics. Only original research papers that do not appear elsewhere are included in the proceedings. Their topics include: C(2)-diffeomorphisms of compact Riemann manifolds, geodesic flows, chaotic behaviour in billards, nonlinear ergodic theory, central limit theorems for subadditive processes, Hausdorff measures for parabolic rational maps, Markov operators, periods of cycles, Julia sets, ergodic theorems. From the Contents: L.A. Bunimovich: On absolutely focusing mirrors.- M. Denker, M. Urbanski: The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps.- F. Ledrappier: Ergodic properties of the stable foliations.- U. Wacker: Invariance principles and central limit theorems for nonadditive stationary processes.- J. Schmeling, R. Siegmund-Schultze: Hoelder continuity of the holonomy map for hyperbolic basic sets.- A.M. Blokh: The spectral decomposition, periods of cycles and Misiurewicz conjecture for graph maps.- and contributions by Chr. Bandt and K. Keller, T. Bogenschutz andH. Crauel, H.G. Bothe, M. Denker and K.F. Kramer, T.P. Hill and U. Krengel, A. Iwanik, Z.S. Kowalski, E. Lesigne, J. Malczak, I. Mizera, J. Sipos, R. Wittmann.




Ergodic Theory


Book Description

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras