Iterative Algebra and Dynamic Modeling


Book Description

Iterative Algebra and Dynamic Modeling links together the use of technology (Excel spreadsheets, Stella modeling software) and modern mathematical techniques to explore the interaction of algebra (at the pre-calculus level) with computer and graphing calculator technology. This book was developed to teach modern applications of mathematics at an introductory level. It is based on the authors well-received teacher-training workshops using the materials.




Mathematics for Dynamic Modeling


Book Description

This new edition of Mathematics for Dynamic Modeling updates a widely used and highly-respected textbook. The text is appropriate for upper-level undergraduate and graduate level courses in modeling, dynamical systems, differential equations, and linear multivariable systems offered in a variety of departments including mathematics, engineering, computer science, and economics. The text features many different realistic applications from a wide variety of disciplines. The book covers important tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. This new edition is a valuable tool for understanding and teaching a rapidly growing field. Practitioners and researchers may also find this book of interest. Contains a new chapter on stability of dynamic models Covers many realistic applications from a wide variety of fields in an accessible manner Provides a broad introduction to the full scope of dynamical systems Incorporates new developments such as new models for chemical reactions and autocatalysis Integrates MATLAB throughout the text in both examples and illustrations Includes a new introduction to nonlinear differential equations




Advances in Iterative Methods for Nonlinear Equations


Book Description

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.




Mathematics for Dynamic Modeling


Book Description

This new edition of Mathematics for Dynamic covers tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. Each chapter includes exercises, many of which expand on the material in the text.




Applied Iterative Methods


Book Description

Applied Iterative Methods




Iterative Methods and Their Dynamics with Applications


Book Description

Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.




Convergence and Applications of Newton-type Iterations


Book Description

This monograph is devoted to a comprehensive treatment of iterative methods for solving nonlinear equations with particular emphasis on semi-local convergence analysis. Theoretical results are applied to engineering, dynamic economic systems, input-output systems, nonlinear and linear differential equations, and optimization problems. Accompanied by many exercises, some with solutions, the book may be used as a supplementary text in the classroom for an advanced course on numerical functional analysis.




Model Emergent Dynamics in Complex Systems


Book Description

Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions. The author’s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles. Model Emergent Dynamics in Complex Systems unifies into one powerful and coherent approach the many varied extant methods for mathematical model reduction and approximation. Using mathematical models at various levels of resolution and complexity, the book establishes the relationships between such multiscale models and clarifying difficulties and apparent paradoxes and addresses model reduction for systems, resolves initial conditions, and illuminates control and uncertainty. The basis for the author’s methodology is the theory and the geometric picture of both coordinate transforms and invariant manifolds in dynamical systems; in particular, center and slow manifolds are heavily used. The wonderful aspect of this approach is the range of geometric interpretations of the modeling process that it produces—simple geometric pictures inspire sound methods of analysis and construction. Further, pictures drawn of state spaces also provide a route to better assess a model’s limitations and strengths. Geometry and algebra form a powerful partnership and coordinate transforms and manifolds provide a powerfully enhanced and unified view of a swathe of other complex system modeling methodologies such as averaging, homogenization, multiple scales, singular perturbations, two timing, and WKB theory. Audience Advanced undergraduate and graduate students, engineers, scientists, and other researchers who need to understand systems and modeling at different levels of resolution and complexity will all find this book useful.




Interactive Dynamic-System Simulation


Book Description

A hands-on tutorial, covering interactive simulation of dynamical systems such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. In practice, simulation experiments are employed for iterative decision-making, whereby programs are run, modified, and run again and again. It is very important to emphasize interactive simulation programming. To this end, the user-friendly Microsoft Windows 95 interface is combined with the DESIRE (Direct Executing Simulation) language. The first chapter introduces dynamical system models and the principles of differential-equation-solving problems. The following chapters provide a tutorial on effective simulation programming, with examples from physics, aerospace, engineering, population dynamics, and physiology. The remaining chapters provide more detailed programming know-how.




Iterative Solution of Large Sparse Systems of Equations


Book Description

This book presents the description of the state of modern iterative techniques together with systematic analysis. The first chapters discuss the classical methods. Comprehensive chapters are devoted to semi-iterative techniques (Chebyshev methods), transformations, incomplete decompositions, gradient and conjugate gradient methods, multi-grid methods and domain decomposition techniques (including e.g. the additive and multiplicative Schwartz method). In contrast to other books all techniques are described algebraically. For instance, for the domain decomposition method this is a new but helpful approach. Every technique described is illustrated by a Pascal program applicable to a class of model problem.