Iterative Learning Control for Equations with Fractional Derivatives and Impulses


Book Description

This book introduces iterative learning control (ILC) and its applications to the new equations such as fractional order equations, impulsive equations, delay equations, and multi-agent systems, which have not been presented in other books on conventional fields. ILC is an important branch of intelligent control, which is applicable to robotics, process control, and biological systems. The fractional version of ILC updating laws and formation control are presented in this book. ILC design for impulsive equations and inclusions are also established. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. This book is useful for graduate students studying ILC involving fractional derivatives and impulsive conditions as well as for researchers working in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.




Iterative Learning Control for Equations with Fractional Derivatives and Impulses


Book Description

This book introduces iterative learning control (ILC) and its applications to the new equations such as fractional order equations, impulsive equations, delay equations, and multi-agent systems, which have not been presented in other books on conventional fields. ILC is an important branch of intelligent control, which is applicable to robotics, process control, and biological systems. The fractional version of ILC updating laws and formation control are presented in this book. ILC design for impulsive equations and inclusions are also established. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. This book is useful for graduate students studying ILC involving fractional derivatives and impulsive conditions as well as for researchers working in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.




Fractional Differential Equations, Inclusions and Inequalities with Applications


Book Description

During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.




Basic Theory Of Fractional Differential Equations (Second Edition)


Book Description

This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.




Basic Theory Of Fractional Differential Equations (Third Edition)


Book Description

This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.




Fractional Hermite-Hadamard Inequalities


Book Description

This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals




Stability and Controls Analysis for Delay Systems


Book Description

Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. - Presents the representation and stability of solutions via the delayed exponential matrix function approach - Gives useful sufficient conditions to guarantee controllability - Establishes ILC design and focuses on new systems such as the first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from various subjects




Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2013 Edition


Book Description

Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Mathematical Analysis. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematical Analysis in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Fractional Differential Equations


Book Description

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.




Applications Of Fractional Calculus In Physics


Book Description

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.