Jet Physics at the LHC


Book Description

This book reviews the latest experimental results on jet physics from proton-proton collisons at the LHC. Jets allow to determine the strong coupling constant over a wide range of energies up the highest ones possible so far, and to constrain the gluon parton distribution of the proton, both of which are important uncertainties on theory predictions in general and for the Higgs boson in particular.A novel approach in this book is to categorize the examined quantities according to the types of absolute, ratio, or shape measurements and to explain in detail the advantages and differences. Including numerous illustrations and tables the physics message and impact of each observable is clearly elaborated.




Advances in Jet Substructure at the LHC


Book Description

This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.




Looking Inside Jets


Book Description

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.




High Jet Multiplicity Physics at the LHC


Book Description

This book describes research in two different areas of state-of-the-art hadron collider physics, both of which are of central importance in the field of particle physics. The first part of the book focuses on the search for supersymmetric particles called gluinos. The book subsequently presents a set of precision measurements of “multi-jet” collision events, which involve large numbers of newly created particles, and are among the dominant processes at the Large Hadron Collider (LHC). Now that a Higgs boson has been discovered at the LHC, the existence (or non-existence) of supersymmetric particles is of the utmost interest and significance, both theoretically and experimentally. In addition, multi-jet collision events are an important background process for a wide range of analyses, including searches for supersymmetry.




Perspectives on Lhc Physics


Book Description

The Large Hadron Collider (LHC), located at CERN, Geneva, Switzerland, is the world's largest and highest energy and highest intensity particle accelerator. Here is a timely book with several perspectives on the hoped-for discoveries from the LHC.This book provides an overview on the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek), and presumably some future Nobel Laureates, plus top younger theorists and experimenters. With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields.




Experimental Particle Physics


Book Description

Experimental Particle Physics is written for advanced undergraduate or beginning postgraduate students starting data analysis in experimental particle physics at the Large Hadron Collider (LHC) at CERN. Assuming only a basic knowledge of quantum mechanics and special relativity, the text reviews the current state of affairs in particle physics, before comprehensively introducing all the ingredients that go into an analysis.




QCD and Collider Physics


Book Description

A detailed overview of the physics of high-energy colliders emphasising the role of QCD.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.




Physics at the Large Hadron Collider


Book Description

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.




Photon Physics at the LHC


Book Description

This thesis reports on the first studies of Standard Model photon production at the Large Hadron Collider (LHC) using the ATLAS detector. Standard Model photon production is a large background in the search for Higgs bosons decaying into photon pairs, and is thus critical to understand. The thesis explains the techniques used to reconstruct and identify photon candidates using the ATLAS detector, and describes a measurement of the production cross section for isolated prompt photons. The thesis also describes a search for the Higgs boson in which the analysis techniques used in the measurement are exploited to reduce and estimate non-prompt backgrounds in diphoton events.