Joining Technology and Application of Advanced Materials


Book Description

The book focuses on joining of advanced materials such as ceramics, intermetallics, laminated materials, composite materials and functional materials considering both in theory and in practice. It also covers details of joint design, weldability and quality assurance of the product. Both principles and engineering practice have been addressed to show advanced, scientific and novelty features. The latest research on advanced joining technology is one of the major features of the book, which is particularly suited for readers who are interested to learn practical solutions in joining of advanced materials. The book can benefit researchers, engineers and graduate students in the fields of joining, materials design and manufacturing, etc.




Joining Processes for Dissimilar and Advanced Materials


Book Description

Joining Processes for Dissimilar and Advanced Materials describes how to overcome the many challenges involved in the joining of similar and dissimilar materials resulting from factors including different thermal coefficients and melting points. Traditional joining processes are ineffective with many newly developed materials. The ever-increasing industrial demands for production efficiency and high-performance materials are also pushing this technology forward. The resulting emergence of advanced micro- and nanoscale material joining technologies, have provided many solutions to these challenges. Drawing on the latest research, this book describes primary and secondary processes for the joining of advanced materials such as metals and alloys, intermetallics, ceramics, glasses, polymers, superalloys, electronic materials and composites in similar and dissimilar combinations. It also covers details of joint design, quality assurance, economics and service life of the product. - Provides valuable information on innovative joining technologies including induction heating of metals, ultrasonic heating, and laser heating at micro- and nanoscale levels - Describes the newly developed modelling, simulation and digitalization of the joining process - Includes a methodology for characterization of joints




Advanced Materials in Automotive Engineering


Book Description

The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials




Advanced Joining Technologies


Book Description

This book covers advances in fusion and solid-state welding processes including basics, welding metallurgy, defect formation, and the effect of process parameters on mechanical properties. Details of the microstructural and mechanical behaviors of weldments are included. This book covers challenges encountered during dissimilar welding of metal by fusion and solid-state welding processes, including remedial solutions and hybrid processes to counter the same. Numerical and statistical simulation approaches used in the welding process for parameter optimization and material flow studies are described as well. Features: Provides details related to the microstructural and mechanical behaviors of welded joints developed by different welding processes. Covers recent research content, metallurgical analysis, and simulation aspects. Discusses the joining of plastics and ceramics. Includes a dedicated chapter on machine learning and digital twin in welding. Explores difficulties associated with the joining of dissimilar metals and alloys. This book is aimed at researchers and graduate students in material joining and characterization and welding.




Advanced Joining Processes


Book Description

This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.







The Multi Material Lightweight Vehicle (MMLV) Project


Book Description

The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety. The MMLV Project presents: • Lightweight materials applications. • Body in white design and computer aided engineering • Engine and transmission design and lightweighting. • Full vehicle test results that are specific to the MMLV subsystems including crash, corrosion, durability and Noise Vibration and Harshness (NVH). • The Life Cycle Analysis (LCA) for the MMLV The aluminum-intensive structure, combined with carbon fiber, magnesium, and titanium results in full vehicle mass reduction of a C/D class family sedan to that of a subcompact B-car (two vehicle segments lighter). The MMLV Project presents engineering solutions that frame materials selection and applications for the future.







Advanced Welding Processes


Book Description

Advanced welding processes provides an excellent introductory review of the range of welding technologies available to the structural and mechanical engineer. The book begins by discussing general topics such power sources, filler materials and gases used in advanced welding. A central group of chapters then assesses the main welding techniques: gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), high energy density processes and narrow-gap welding techniques. Two final chapters review process control, automation and robotics.Advanced welding processes is an invaluable guide to selecting the best welding technology for mechanical and structural engineers. - An essential guide to selecting the best welding technology for mechanical and structural engineers - Provides an excellent introductory review of welding technologies - Topics include gas metal arc welding, laser welding and narrow gap welding methods