Topics in Contemporary Mathematical Analysis and Applications


Book Description

Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.




Linear Partial Differential Operators In Gevrey Spaces


Book Description

The book is devoted to new and classical results of the theory of linear partial differential operators in Gevrey spaces. The “microlocal approach” is adopted, by using pseudo-differential operators, wave front sets and Fourier integral operators.Basic results for Schwartz-distributions, c∞ and analytic classes are also included, concerning hypoellipticity, solvability and propagation of singularities.Also included is a self-contained exposition of the calculus of the pseudo-differential operators of infinite order.




Mathematical Analysis I


Book Description

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.




On the Cauchy Problem


Book Description

Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.




Modern Real Analysis


Book Description

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.




The Gohberg Anniversary Collection


Book Description

In this article we shall use two special classes of reproducing kernel Hilbert spaces (which originate in the work of de Branges [dB) and de Branges-Rovnyak [dBRl), respectively) to solve matrix versions of a number of classical interpolation problems. Enroute we shall reinterpret de Branges' characterization of the first of these spaces, when it is finite dimensional, in terms of matrix equations of the Liapunov and Stein type and shall subsequently draw some general conclusions on rational m x m matrix valued functions which are "J unitary" a.e. on either the circle or the line. We shall also make some connections with the notation of displacement rank which has been introduced and extensively studied by Kailath and a number of his colleagues as well as the one used by Heinig and Rost [HR). The first of the two classes of spaces alluded to above is distinguished by a reproducing kernel of the special form K (>.) = J - U(>')JU(w)* (Ll) w Pw(>') , in which J is a constant m x m signature matrix and U is an m x m J inner matrix valued function over ~+, where ~+ is equal to either the open unit disc ID or the open upper half plane (1)+ and Pw(>') is defined in the table below.




Differential Operators On Spaces Of Variable Integrability


Book Description

The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration.The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered.At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics.




Linear Stochastic Systems


Book Description

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.