Dimensionality Reduction with Unsupervised Nearest Neighbors


Book Description

This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.




Data Mining in Agriculture


Book Description

Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®.




Hands-On Machine Learning with R


Book Description

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.




Lectures on the Nearest Neighbor Method


Book Description

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).




Data Algorithms


Book Description

If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)




On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE


Book Description

missions in fact also treat an envisaged mutual impact among them. As for the 2002 edition in Irvine, the organizers wanted to stimulate this cross-pollination with a program of shared famous keynote speakers (this year we got Sycara, - ble, Soley and Mylopoulos!), and encouraged multiple attendance by providing authors with free access to another conference or workshop of their choice. We received an even larger number of submissions than last year for the three conferences (360 in total) and the workshops (170 in total). Not only can we therefore again claim a measurable success in attracting a representative volume of scienti?c papers, but such a harvest allowed the program committees of course to compose a high-quality cross-section of worldwide research in the areas covered. In spite of the increased number of submissions, the Program Chairs of the three main conferences decided to accept only approximately the same number of papers for presentation and publication as in 2002 (i. e. , around 1 paper out of every 4–5 submitted). For the workshops, the acceptance rate was about 1 in 2. Also for this reason, we decided to separate the proceedings into two volumes with their own titles, and we are grateful to Springer-Verlag for their collaboration in producing these two books. The reviewing process by the respective program committees was very professional and each paper in the main conferences was reviewed by at least three referees.




Machine Learning Algorithms From Scratch with Python


Book Description

You must understand algorithms to get good at machine learning. The problem is that they are only ever explained using Math. No longer. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.




Advances in Databases and Information Systems


Book Description

This book constitutes the refereed proceedings of the 11th East European Conference on Advances in Databases and Information Systems, ADBIS 2007, held in Varna, Bulgaria, in September/October 2007. The 23 revised papers presented together with three invited lectures were carefully reviewed and selected from 77 submissions. The papers address current research on database theory, development of advanced DBMS technologies, and their advanced applications.




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.




Machine Learning for Hackers


Book Description

If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data