Kenzan Method for Scaffold-Free Biofabrication


Book Description

This is the first book about the “Kenzan” method for scaffold-free biofabrication, which does not rely on biomaterials as scaffolds to ensure correct multicellular spheroid positioning for building three dimensional construct only made from cells. The book explains the basic principles and concepts of the microneedle-based (“Kenzan”) method of building surgically-implantable tissue constructs using robotic cell spheroid-based three-dimensional bioprinting, a novel technology that opens up unique opportunities for the bioengineering of tissues and organs. First book on the novel Kenzan method of tissue engineering; Explains basic concepts and applications for organ regeneration modeling; Introduces a unique robotic system for scaffold-free cell construction.




3D Printing and Biofabrication


Book Description

This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.




Cartilage: From Biology to Biofabrication


Book Description

This book provides a comprehensive overview of cartilage structure, functions, and approaches for the regeneration of cartilage tissue. It reviews multiple signaling pathways that are involved in the growth and repair of cartilage tissue. The initial chapter of the book examines the etiology, diagnosis, and pathological features of various cartilage diseases. Subsequently, the book presents recent advances in biomaterial sciences, regenerative medicine, and fabrication technology for cartilage regeneration. It discusses hydrogels as a promising scaffold for cartilage tissue engineering, focusing on recapitulating microenvironments present during development or in adult tissue to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Lastly, it covers the applications of 3 D printing techniques for the fabrication of scaffolds for cartilage tissue regeneration for the production of biological implants capable of treating a range of conditions.




Biomaterials and Engineering for Implantology


Book Description

Biomaterials are composed of metallic materials, ceramics, polymers, composites and hybrid materials. Biomaterials used in human beings require safety regulations, toxicity, allergic reaction, etc. When used as implantable materials their biological compatibility, biomechanical compatibility, and morphological compatibility must be acessed. This book explores the design and requirements of biomaterials for the use in implantology.




Biofabrication


Book Description

In vitro fabrication of tissues and the regeneration of internal organs are no longer regarded as science fiction but as potential remedies for individuals suffering from chronic degenerative diseases. Tissue engineering has generated much interest from researchers in many fields, including cell and molecular biology, biomedical engineering, transplant medicine, and organic chemistry. Attempts to build tissues or organs in vitro have utilized both scaffold and scaffold-free approaches. Despite considerable progress, fabrication of three-dimensional tissue constructs in vitro remains a challenge. In this chapter, we introduce and discus current concepts of tissue engineering with particular focus on future clinical application.




Innovations in Nephrology


Book Description

Our world is facing unprecedented technological development, which affects all the sectors of society. The 4th industrial revolution has brought numerous advances that are currently integrated in our daily life, including artificial intelligence (A.I.), internet of things (IoT), genetic engineering, 3D-printing and robotics. The health care sector is one of the most impacted by these technologies of the so-called digital era. From the simple advent of medical records to robotic surgery, health care has significantly changed from the XX to XXI century and is constantly changing, incorporating novel technologies. Nephrology is itself an innovative branch of medicine, created as a discipline in the 1960s, with breakthrough inventions, such as the dialysis machine, which made it possible to prolong life of those who suffer from chronic kidney disease; kidney transplant, with point-of-care immunosuppression that favours maintenance of kidney allografts for long years; kidney biopsy, which made it possible to discover the mysteries of glomerulonephritis and nephropathology. Novel technologies, such as A.I., IoT, robotics, stem cells, 3D-printing, mHealth, eHealth and several others are starting to be applied in nephrology, with promising results. It is possible that a great part of these technologies will become routinely available in clinical practice, and the burden of kidney diseases will significantly decrease once prevention, prediction, detection, monitoring and treatment of kidney diseases are more precise, with patients taking part in the process and becoming more and more connected. This book gathers essential information on the technologies that have been applied in nephrology and that can be applied in the future, with real possibilities of improving the care of kidney diseases. At first glance, this work is directed to the entire nephrology community and all the healthcare professionals that deal with kidney diseases. Researchers from different fields, not directly linked to nephrology, may also be interested in the book since many of the topics presented are related to other areas and serve as examples of their uses in medicine, such as artificial intelligence, robotics, and big data. Finally, the content provides an important resource to medical students, discussing technologies that will certainly be integrated in their professional practice.




3D Bioprinting for Reconstructive Surgery


Book Description

3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques




Towards 4D Bioprinting


Book Description

Towards 4D Printing presents the current state of three-dimensional (3D) bioprinting and its recent offspring, 4D bioprinting. These are attractive approaches to tissue engineering because they hold the promise of building bulky tissue constructs with incorporated vasculature. Starting with the discussion of 3D and 4D printing of inanimate objects, the book presents several 3D bioprinting techniques and points out the challenges imposed by living cells on the bioprinting process. It argues that, in order to fine-tune the bioprinter, one needs a quantitative analysis of the conditions experienced by cells during printing. Once the printing is over, the construct evolves according to mechanisms known from developmental biology. These are described in the book along with computer simulations that aim to predict the outcome of 3D bioprinting.In addition, the book provides the latest information on the principles and applications of 4D bioprinting, such as for medical devices and assistive technology. The last chapter discusses the perspectives of the field. This book provides an up-to date description of the theoretical tools developed for the optimization of 3D bioprinting, presents the morphogenetic mechanisms responsible for the post-printing evolution of the bioprinted construct and describing computational methods for simulating this evolution, and discusses the leap from 3D to 4D bioprinting in the light of the latest developments in the field. Most importantly, Towards 4D Printing explains the importance of theoretical modeling for the progress of 3D and 4D bioprinting. - Presents theoretical tools needed for the optimization of the bioprinting process - Describes the principles and implementation of computer simulations needed to predict the outcome of 3D bioprinting - Analyzes the distinctive features of 4D bioprinting along with its applications and perspectives




Pattern formation in biology


Book Description




3D Bioprinting


Book Description

This volume explores the latest developments and contributions to the field of 3D bioprinting, and discusses its use for quality R&D and translation. The chapters in this book are divided into two parts: Part one covers generic themes in bioprinting to introduce novice readers to the field, while also providing experts with new and helpful information. Part two discusses protocols used to prepare, characterize, and print a variety of biomaterials, cells, and tissues. These chapters also emphasize methods used for printing defined and humanized constructs suitable for human tissue modelling in research and applicable to clinical product development. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, 3D Bioprinting: Methods and Protocols is a valuable resource for researchers and bioprinting laboratories/facilities interested in learning more about this rapidly evolving technology.