Kinetic Theory of Nonideal Gases and Nonideal Plasmas


Book Description

Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a short account of the kinetic theory of chemically reacting systems and of partially ionized plasmas, in order to espouse further studies in the field. Physicists, scientific researchers, professors, and graduate students in various fields will find the text of good use.




Kinetic Theory of Gases and Plasmas


Book Description

Kinetic theory is the link between the non--equilibrium statistical mechanics of many particle systems and macroscopic or phenomenological physics. Therefore much attention is paid in this book both to the derivation of kinetic equations with their limitations and generalizations on the one hand, and to the use of kinetic theory for the description of physical phenomena and the calculation of transport coefficients on the other hand. The book is meant for researchers in the field, graduate students and advanced undergraduate students. At the end of each chapter a section of exercises is added not only for the purpose of providing the reader with the opportunity to test his understanding of the theory and his ability to apply it, but also to complete the chapter with relevant additions and examples that otherwise would have overburdened the main text of the preceding sections. The author is indebted to the physicists who taught him Statistical Mechanics, Kinetic Theory, Plasma Physics and Fluid Mechanics. I gratefully acknowledge the fact that much of the inspiration without which this book would not have been possible, originated from what I learned from several outstanding teachers. In particular I want to mention the late Prof. dr. H. C. Brinkman, who directed my first steps in the field of theoretical plasma physics, my thesis advisor Prof. dr. N. G. Van Kampen and Prof. dr. A. N. Kaufman, whose course on Non-Equilibrium Statistical Mechanics in Berkeley I remember with delight.










ERDA Energy Research Abstracts


Book Description




ERDA Energy Research Abstracts


Book Description




Classical Transport Theory


Book Description

Classical Transport







Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics


Book Description

This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. Both irreversible Boltzmann and generalized Boltzmann equations are used for deriving theories of irreversible transport equations and generalized hydrodynamic equations, which rigorously conform to the tenet. All observables described by the so-formulated theories therefore also strictly obey the tenet.




Quantum Statistics of Dense Gases and Nonideal Plasmas


Book Description

The aim of this book is the pedagogical exploration of the basic principles of quantum-statistical thermodynamics as applied to various states of matter – ranging from rare gases to astrophysical matter with high-energy density. The reader will learn in this work that thermodynamics and quantum statistics are still the concepts on which even the most advanced research is operating - despite of a flood of modern concepts, classical entities like temperature, pressure, energy and entropy are shown to remain fundamental. The physics of gases, plasmas and high-energy density matter is still a growing field and even though solids and liquids dominate our daily life, more than 99 percent of the visible Universe is in the state of gases and plasmas and the overwhelming part of matter exists at extreme conditions connected with very large energy densities, such as in the interior of stars. This text, combining material from lectures and advanced seminars given by the authors over many decades, is a must-have introduction and reference for both newcomers and seasoned researchers alike.