Kinetics of Chemical Processes


Book Description

Kinetics of Chemical Processes details the concepts associated with the kinetic study of the chemical processes. The book is comprised of 10 chapters that present information relevant to applied research. The text first covers the elementary chemical kinetics of elementary steps, and then proceeds to discussing catalysis. The next chapter tackles simplified kinetics of sequences at the steady state. Chapter 5 deals with coupled sequences in reaction networks, while Chapter 6 talks about autocatalysis and inhibition. The seventh chapter describes the irreducible transport phenomena in chemical kinetics. The next two chapters discuss the correlations in homogenous kinetics and heterogeneous catalysis, respectively. The last chapter covers the analysis of reaction networks. The book will be of great use to students, researchers, and practitioners of scientific disciplines that deal with chemical reaction, particularly chemistry and chemical engineering.







Chemical Reaction Kinetics


Book Description

A practical approach to chemical reaction kinetics—from basic concepts to laboratory methods—featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. Takes a practical approach to chemical reaction kinetics basic concepts and methods Features numerous illustrative case studies based on the author’s extensive experience in the industry Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.




Green Chemical Engineering


Book Description

This book explores a balance between energy and material, applied to chemical reactors with catalysis, to achieve a given purpose. It includes the fundamentals of chemical reaction engineering and explains reactor design fundamentals. The book spans the full range-from the fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies-to their equivalent large-scale industrial production processes. It also includes significant developments, with recent research case studies and literature.




Kinetics of Chemical Reactions


Book Description

This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.




Chemical Kinetics and Reaction Dynamics


Book Description

Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.




Rates of Soil Chemical Processes


Book Description

Kinetics of soil chemical reactions. Methods of obtaining and analyzin kinetic data. Relaxation methods for studying kinetics of soil chemical phenomena. Kinetics of ion sorptionon humic substances. Kinetics of sorption/desorption processes in soils. Modelling nonequilibrium reactions of inorganic solutes in soil columns. Sorption kinetics of organic chemicals: methods, models, and mechanisms.




Modeling of Chemical Kinetics and Reactor Design


Book Description

This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.




Chemical Kinetics and Process Dynamics in Aquatic Systems


Book Description

Chemical Kinetics and Process Dynamics in Aquatic Systems is devoted to chemical reactions and biogeochemical processes in aquatic systems. The book provides a thorough analysis of the principles, mathematics, and analytical tools used in chemical, microbial, and reactor kinetics. It also presents a comprehensive, up-to-date description of the kinetics of important chemical processes in aquatic environments. Aquatic photochemistry and correlation methods (e.g., LFERs and QSARs) to predict process rates are covered. Numerous examples are included, and each chapter has a detailed bibliography and problems sets. The book will be an excellent text/reference for professionals and students in such fields as aquatic chemistry, limnology, aqueous geochemistry, microbial ecology, marine science, environmental and water resources engineering, and geochemistry.




An Introduction to Chemical Kinetics


Book Description

This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter.