Gas-Solid Reactions


Book Description

Gas-Solid Reactions describes gas-solid reaction systems, focusing on the four phenomena—external mass transfer, pore diffusion, adsorption/desorption, and chemical reaction. This book consists of eight chapters. After the introduction provided in Chapter 1, the basic components of gas-solid reactions are reviewed in Chapter 2. Chapter 3 describes the reactions of individual nonporous solid particles, while Chapter 4 elaborates the reaction of single porous particles. Solid-solid reactions proceeding through gaseous intermediates are considered in Chapter 5. Chapter 6 deals with the experimental approaches to the study of gas-solid reaction systems. How information on single-particle behavior may be used for the design of multiparticle, large-scale assemblies, and packed- and fluidized-bed reaction systems is deliberated in Chapter 7. The last chapter covers the specific gas-solid reaction systems, including some statistical indices indicating the economic importance of the systems and processes it's based on. This publication is recommended for practicing engineers engaged in process research, development, and design in the many fields where gas-solid reactions are important.




The Reduction of Iron Ores


Book Description

For the English edition the book was revised by the authors, taking into account a number of suggestions of the readers of the German edition. Some of the most important publications in the field of iron ore reduction, which appeared since 1967, have been used to bring the manuscript as far as possible up to date. The kind assistance of Dr. K. BOHNENKAMP of the Max-Planck-Institut fUr Eisenforschung, Dusseldorf, was much appreciated in this respect. Ohapters 2.9 and 2.10, dealing with the reduction of molten oxide slags by solid carbon and with the contribution of the water-gas reaction to iron ore reduction, have been added for the English edition. Ohapter 2.9 has been completely revised with the kind assistance of Dr. H. J. GRABKE, Stuttgart. Dipl.-Ing. J. LODDE contributed to this edition by revising the bibliography. Owing to the rapid development of the blast furnace it was necessary to revise Ohapter 5 considerably. In this field many valuable suggestions have been made by Dipl.-Ing. G. LANGE and Dipl.-Ing. P. HEINRICH. Furthermore, Ohapters3 and 4 have been thoroughly revised by Dr.-Ing. E. FORSTER and Dr.-Ing. U. SCHIERLOH. Last, but not least, we have to thank our translators for their excellent work.




Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals


Book Description

This book describes and explains the methods by which three related ores and recyclables are made into high purity metals and chemicals, for materials processing. It focuses on present day processes and future developments rather than historical processes. Nickel, cobalt and platinum group metals are key elements for materials processing. They occur together in one book because they (i) map together on the periodic table (ii) occur together in many ores and (iii) are natural partners for further materials processing and materials manufacturing. They all are, for example, important catalysts – with platinum group metals being especially important for reducing car and truck emissions. Stainless steels and CoNiFe airplane engine super alloys are examples of practical usage. The product emphasises a sequential, building-block approach to the subject gained through the author's previous writings (particularly Extractive Metallurgy of Copper in four editions) and extensive experience. Due to the multiple metals involved and because each metal originates in several types of ore – e.g. tropical ores and arctic ores this necessitates a multi-contributor work drawing from multiple networks and both engineering and science. - Synthesizes detailed review of the fundamental chemistry and physics of extractive metallurgy with practical lessons from industrial consultancies at the leading international plants - Discusses Nickel, Cobalt and Platinum Group Metals for the first time in one book - Reviews extraction of multiple metals from the same tropical or arctic ore - Industrial, international and multidisciplinary focus on current standards of production supports best practice use of industrial resources




Clean Ironmaking and Steelmaking Processes


Book Description

​This book describes the available technologies that can be employed to reduce energy consumption and greenhouse emissions in the steel- and ironmaking industries. Ironmaking and steelmaking are some of the largest emitters of carbon dioxide (over 2Gt per year) and have some of the highest energy demand (25 EJ per year) among all industries; to help mitigate this problem, the book examines how changes can be made in energy efficiency, including energy consumption optimization, online monitoring, and energy audits. Due to negligible regulations and unparalleled growth in these industries during the past 15-20 years, knowledge of best practices and innovative technologies for greenhouse gas remediation is paramount, and something this book addresses. Presents the most recent technological solutions in productivity analyses and dangerous emissions control and reduction in steelmaking plants; Examines the energy saving and emissions abatement efficiency for potential solutions to emission control and reduction in steelmaking plants; Discusses the application of the results of research conducted over the last ten years at universities, research centers, and industrial institutions.




Hydrogen Assisted Direct Reduction of Iron Oxides


Book Description

The book describes the main approaches to produce and synthesize iron and steel through hydrogen-based technologies. Depending on the processing route and on the energy demand, the best available techniques and the most forward-looking solutions are explained. The book is edited with the contribution representing a range of industries in order to evaluate the industrial feasibility of each selected technology. It presents the most efficient solutions applied by ironmaking and steelmaking factories all around the world.







Engineering Flow and Heat Exchange


Book Description

The third edition of Engineering Flow and Heat Exchange is the most practical textbook available on the design of heat transfer and equipment. This book is an excellent introduction to real-world applications for advanced undergraduates and an indispensable reference for professionals. The book includes comprehensive chapters on the different types and classifications of fluids, how to analyze fluids, and where a particular fluid fits into a broader picture. This book includes various a wide variety of problems and solutions – some whimsical and others directly from industrial applications. Numerous practical examples of heat transfer Different from other introductory books on fluids Clearly written, simple to understand, written for students to absorb material quickly Discusses non-Newtonian as well as Newtonian fluids Covers the entire field concisely Solutions manual with worked examples and solutions provided




Advances in Synthesis of Metallic, Oxidic and Composite Powders


Book Description

Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching¸ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.







Combustion


Book Description

This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.