Kinks and Domain Walls


Book Description

This 2006 text, reissued as OA, introduces kinks and domain walls and their principal classical and quantum properties.




Domain Walls


Book Description

As the first of its kind, this book identifies major questions and challenges that will influence research on domain walls in the years to come.




Advanced Topics in Quantum Field Theory


Book Description

Quantum field theory is the basis of our modern description of physical phenomena at the fundamental level. This systematic and comprehensive text emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. This Second Edition is revised to include topics developed in the last decade, including higher-form global symmetries and their applications, anomalies in supersymmetric theories beyond Ferrara–Zumino, and non-Abelian supersymmetric vortex strings. A new final part is added, presenting more than 90 problems with detailed solutions, allowing students to check their understanding of the acquired knowledge and providing extra details to supplement the main text descriptions. This an indispensable book for graduate students and researchers in theoretical physics.




Advanced Topics in Quantum Field Theory


Book Description

Devoted specifically to modern field theory, this is an indispensable book for graduate students and researchers in theoretical physics. It emphasizes nonperturbative phenomena and supersymmetry, and discusses various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective.




Frontiers Of Neutron Scattering - Proceedings Of The Seventh Summer School On Neutron Scattering


Book Description

This book provides ideas on what neutron scattering could look like in the next millennium. In particular, nonconventional, unusual or innovative neutron scattering experiments (from both the scientific and the instrumental point of view) are described which either have novel applications or provide a new insight into science and technology. Chapters on theoretical aspects are adequately included. The scientific and technical areas cover the following topics: novel neutron scattering techniques and perspectives in neutron scattering instrumentation (including sample environment); soft condensed matter, particularly colloids and polymers; materials science and industrial applications; structure and dynamics of multilayers and nanocrystalline materials; dynamical aspects and quantum effects in molecular magnets; strongly correlated electron systems, with emphasis on dynamic correlations in low-dimensional magnets. All these topics are thoroughly introduced and discussed by acknowledged experts.




Advanced Topics in Quantum Field Theory


Book Description

Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.




Autosolitons


Book Description

This monograph is devoted to an entirely new branch of nonlinear physics - solitary intrinsic states, or autosolitons, which form in a broad class of physical, chemical and biological dissipative systems. Autosolitons are often observed as highly nonequilibrium regions in slightly nonequilibrium systems, in many ways resembling ball lightning which occurs in the atmosphere. We develop a new approach to problems of self-organization and turbulence, treating these phenomena as a result of spontaneous formation and subsequent evolution of autosolitons. Scenarios of self-organization involve sophisticated interactions between autosolitons, whereas turbulence is regarded as a pattern of autosolitons which appear and disappear at random in different parts of the system. This monograph is the first attempt to provide a comprehensive summary of the theory of autosolitons as developed by the authors over the years of research. The monograph is comprised of three more or less autonomous parts. Part I deals with the physical nature and experimental studies of autosolitons and self organization in various physical systems: semiconductor and gas plasma, heated gas mixture, semiconductor structures, composite superconductors, optical and magnetic media, systems with uniformly generated combustion matter, distributed gas-discharge and electronic systems. We discuss feasibility of autosolitons in the form of highly nonequilibrium regions in slightly nonequilibrium gases and semiconductors, "hot" and "cold" regions in semiconductor and gas plasmas, static, pulsating and traveling combustion fronts.




The Frenkel-Kontorova Model


Book Description

Theoretical physics deals with physical models. The main requirements for a good physical model are simplicity and universality. Universal models which can be applied to describe a variety of different phenomena are very rare in physics and, therefore, they are of key importance. Such models attract the special attention of researchers as they can be used to describe underlying physical concepts in a simple way. Such models appear again and again over the years and in various forms, thus extending their applicability and educa tional value. The simplest example of this kind is the model of a pendulum; this universal model serves as a paradigm which encompasses basic features of various physical systems, and appears in many problems of very different physical context. Solids are usually described by complex models with many degrees of freedom and, therefore, the corresponding microscopic equations are rather complicated. However, over the years a relatively simple model, known these days as the Prenkel-K ontorova model, has become one of the fundamental and universal tools of low-dimensional nonlinear physics; this model describes a chain of classical particles coupled to their neighbors and subjected to a pe riodic on-site potential.




Handbook of Materials Modeling


Book Description

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.




Physics of Surfaces and Interfaces


Book Description

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.