Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI


Book Description

Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.




SEVEN BOOKS IN ONE: Sinyal Digital, Citra Digital, Machine Learning, Deep Learning, dan Data Science dengan Python GUI


Book Description

BUKU 1: Konsep dan Implementasi Pemrograman Python Buku ini merupakan buku teks pemrograman komputer menggunakan Python yang difokuskan untuk pembelajaran efektif. Sengaja dirancang untuk pelbagai tingkat ketertarikan dan kemampuan pembelajar, buku ini cocok untuk siswa SMA/SMK, mahasiswa, insinyur, dan bahkan peneliti dalam berbagai displin ilmu. Tidak ada pengalaman pemrograman yang diperlukan, dan hanya sedikit kemampun aljabar tingkat sekolah menenga atas yang diperlukan. Buku ini memang dirancang untuk mengambil rute tradisional, dengan lebih dahulu menekankan sintaksis-sintaksis dasar, struktur-struktur kendali, fungsi, dekomposisi prosedural, dan struktur data built-in seperti list, set, dan kamus (dictionary). Panduan langkah-demi-langkah di dalamnya diharapkan bisa membantu kepercayaan diri pembaca untuk menjadi programer yang bisa menyelesaikan permasalahan-permasalahan pemrograman. Sejumlah contoh disediakan untuk mendemonstrasikan bagaimana menerapkan konsep-konsep yang telah disajikan terhadap sejumlahan tantangan pemrograman. Pada Bab 1, Anda akan diajari mengenal IDE Spyder untuk memprogram Python dan mengetahui sintaksis dasar dari program sederhana Python. Pada Bab 2, Anda akan belajar: Mendefinisikan dan menggunakan variabel dan konstanta; Memahami sejumlah watak dan keterbatasan bilangan integer (bilangan bulat) dan titik-mengambang (bilangan pecahan); Memahami pentingnya komentar dan tataletak kode; Menulis ekspresi aritmatik dan statemen penugasan; Menciptakan program yang membaca dan memproses masukan, dan menampilkan hasilnya; Bagaimana menggunakan string Python; Menciptakan program grafika menggunakan sejumlah bangun dasar dan teks. Pada Bab 3, Anda akan belajar: Mengimplementasikan keputusan menggunakan statemen if; Membandingkan bilangan integer, titik-mengambang, dan string; Menuliskan statemen menggunakan ekspresi Boolean; Memvalidasi masukan user. Pada Bab 4, Anda akan belajar: Mengimplementasikan loop while dan for; Menjadi familiar dengan algoritma-algoritma yang melibatkan loop; Memahami loop bersarang; Memproses string. Pada Bab 5, Anda akan belajar: Bagaimana mengimplementasikan fungsi; Menjadi familiar dengan konsep pelewatan parameter; Mengembangkan strategi pendekomposisian pekerjaan kompleks menjadi pekerjaan-pekerjaan yang lebih mudah; Mampu menentukan skop variabel. Pada Bab 6, Anda akan belajar: Mengumpulkan elemen-elemen menggunkan list; Menggunakan loop for untuk menjelajah list; Menggunakan sejumlah algoritma umum untuk memproses list; Menggunakan list dengan fungsi; Bekerja dengan tabel data. Pada Bab 7, Anda akan belajar: Membangun dan menggunakan kontainer set; Menggunakan operasi-operasi set untuk memproses data; Membangun dan menggunakan kontainer dictionary; Menggunakan dictionary untuk tabel; Menggunakan struktur kompleks. BUKU 2: SINYAL DAN CITRA DIGITAL dengan PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan belajar bagaimana menggunakan OpenCV, NumPy dan sejumlah pustaka lain untuk melakukan pemrosesan sinyal, pemrosesan citra, deteksi objek, dan ekstraksi fitur dengan memanfaatkan Python GUI (PyQt). Anda akan belajar cara memfilter sinyal, mendeteksi tepi dan segmen, dan menekan derau pada citra dengan memanfaatkan PyQt. Anda juga akan belajar cara mendeteksi objek (wajah, mata, dan mulut) menggunakan Haar Cascades dan cara mendeteksi fitur pada citra menggunakan Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), dan Features from Accelerated Uji Segmen (FAST). Pada bab 1, Anda akan mempelajari secara langkah demi langkah: membuat aplikasi gui sederhana; menggunakan tombol radio; mengelompokkan tombol radio; menggunakan widget kotak centang; menggunakan dua grup kotak centang; memahami sinyal dan slot; mengonversi jenis data; menggunakan widget spin box; menggunakan scrollbar dan slider; menggunakan list widget; menggunakan kotak kombo; dan menggunakan widget Table. Pada bab 2, Anda akan mempelajari secara langkah demi langkah: membuat grafik garis sederhana; membuat grafik garis sederhana dengan python gui; membuat grafik garis sederhana dengan python gui: bagian 2; membuat dua atau lebih banyak grafik di sumbu yang sama;membuat dua sumbu dalam satu kanvas; menggunakan dua widget;menggunakan dua widget, masing-masing memiliki dua sumbu; menggunakan sumbu dengan tingkat opacity tertentu; memilih warna garis dari combo box; menghitung fast fourier transform; membuat gui untuk FFT; membuat gui untuk FFT dengan beberapa sinyal input lain; membuat gui untuk sinyal bising; membuat gui untuk penapisan sinyal berderau; dan membuat gui untuk penapisan sinyal wav. Pada bab 3, Anda akan mempelajari secara langkah demi langkah: mengkonversi citra RGB menjadi grayscale; mengubah citra RGB menjadi citra YUV; mengkonversi citra RGB menjadi citra HSV; memfilter citra; menampilkan histogram citra; menampilkan histogram citra tertapis; memfilter citra dengan memanfaatkan opsi pada kotak centang; menerapkan ambang batas citra; dan menerapkan ambang batas citra adaptif. Pada bab 4, Anda akan mempelajari secara langkah demi langkah: membangkitkan dan menampilkan citra berderau; menerapkan deteksi tepi pada citra; menerapkan segmentasi citra menggunakan algoritma multiple thresholding dan k-means; dan menerapkan penekanan derau citra. Pada bab 5, Anda akan mempelajari secara langkah demi langkah: mendeteksi wajah, mata, dan mulut menggunakan haar cascades; mendeteksi wajah menggunakan haar cascades dengan pyqt; mendeteksi mata, dan mulut menggunakan haar cascades dengan pyqt; dan mengekstraksi objek yang terdeteksi. Pada bab 6, Anda akan mempelajari secara langkah demi langkah: mendeteksi fitur citra menggunakan deteksi harris corner; mendeteksi fitur citra menggunakan deteksi sudut shi-tomasi; mendeteksi fitur citra menggunakan Scale-Invariant Feature Transform (SIFT); dan mendeteksi fitur citra menggunakan Features from Accelerated Uji Segmen (FAST). BUKU 3: IMPLEMENTASI MACHINE LEARNING DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan mempelajari cara menggunakan NumPy, Pandas, OpenCV, Scikit-Learn, dan pustaka lain untuk memplot grafik dan memproses citra digital. Kemudian, Anda akan mempelajari cara mengklasifikasikan fitur menggunakan model Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan K-Nearest Neighbor (KNN). Anda juga akan belajar cara mengekstraksi fitur menggunakan algoritma Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) dan menggunakannya dalam pembelajaran mesin (machine learning). Pada Bab 1, Anda akan mempelajari dasar-dasar penggunakan Python GUI dengan Qt Designer. Pada Bab 2, Anda akan mempelajari: Langkah-Langkah Menciptakan Grafik Garis Sederhana; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 1; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 2; Langkah-Langkah Menampilkan Dua atau Lebih Grafik pada Sumbu yang Sama; Langkah-Langkah Menciptakan Dua Sumbu pada Satu Canvas; Langkah-Langkah Menggunakan Dua Widget; Langkah-Langkah Menggunakan Dua Widget, Masing-Masing Memiliki Dua Sumbu; Langkah-Langkah Menggunakan Sumbu dengan Tingkat Keburaman Tertentu; Langkah-Langkah Memilih Warna Garis dari Combo Box; Langkah-Langkah Menghitung Fast Fourier Transform; Langkah-Langkah Menciptakan GUI untuk FFT; Langkah-Langkan Menciptakan GUI untuk FFT atas Sinyal-Sinyal Masukan Lain; Langkah-Langkah Menciptakan GUI untuk Sinyal Berderau; Langkah-Langkah Menciptakan GUI untuk Penapisan Sinyal Berderau; Langkah-Langkah Mencipakan GUI untuk Penapisan Sinyal Wav; Langkah-Langkah Mengkonversi Citra RGB Menjadi Keabuan; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra YUV; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra HSV; Langkah-Langkah Menapis Citra; Langkah-Langkah Menampilkan Histogram Citra ; Langkah-Langkah Menampilkan Histogram Citra Tertapis; Langkah-Langkah Menapis Citra: Memanfaatkan CheckBox; Langkah-Langkah Mengimplementasikan Ambang Batas Citra; dan Langkah-Langkah Mengimplementasikan Ambang Batas Adaptif. Pada Bab 3, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron; Langkah-Langkah Implementasi Perceptron dengan PyQt; Langkah-Langkah Implementasi Adaline (ADAptive LInear NEuron); dan Langkah-Langkah Implementasi Adaline dengan PyQt. Pada Bab 4, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression (LR); Langkah-Langkah Implementasi Model Logistic Regression dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Mode Support Vector Machine (SVM) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Decision Tree (DT) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Model Random Forest (RF) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Model K-Nearest Neighbor (KNN) Menggunakan Scikit-Learn. Pada Bab 5, Anda akan mempelajari: Langkah-Langkah Implementasi Principal Component Analysis (PCA); Langkah-Langkah Implementasi Principal Component Analysis (PCA); Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Principal Component Analysis (PCA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) dengan scikit-learn; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn dengan PyQt. Pada Bab 6, Anda akan mempelajari: Langkah-Langkah Memuat Dataset MNIST; Langkah-Langkah Memuat Dataset MNIST dengan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; dan Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt. Pada Bab 7, Anda akan mempelajari: Langkah-Langkah Membangkitkan dan Menampilkan Citra Berderau; Langkah-Langkah Mengimplemantasikan Deteksi Tepi pada Citra; Langkah-Langkah Mengimplementasikan Segmentasi Menggunakan Ambang Batas Jamak dan Algoritma K-Means; Langkah-Langkah Mengimplementasikan Penekanan Derau pada Citra; Langkah-Langkah Mendeteksi Wajah, Mata, dan Mulut dengan Haar Cascades; Langkah-Langkah Mendeteksi Wajah Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mendeteksi Mata dan Mulut Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mengekstraksi Objek-Objek Terdeteksi; Langkah-Langkah Mendeteksi Fitur Citra dengan Harris Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Shi-Tomasi Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Scale-Invariant Feature Transform (SIFT) ; dan Langkah-Langkah Mendeteksi Fitur Citra dengan Accelerated Segment Test (FAST). BUKU 4: Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 5: Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 6: Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 7: Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.




Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI


Book Description

Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini.




Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI


Book Description

Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini.




Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI


Book Description

Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.




Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, and TensorFlow with PYTHON GUI


Book Description

This book implements deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).




Step by Step Tutorials on Deep Learning Using Scikit-Learn, Keras, and Tensorflow with Python GUI


Book Description

In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion.In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT).In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https: //www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose.In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https: //www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose.In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https: //www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https: //www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purp




The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI


Book Description

In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 datasetIn Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram.In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose.In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose.In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https: //www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https: //www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose.In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https: //www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpo




Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI


Book Description

In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). To perform license plate detection, these steps are taken: 1. Dataset Preparation: Extract the dataset and organize it into separate folders for images and annotations. The annotations should contain bounding box coordinates for license plate regions.; 2. Data Preprocessing: Load the images and annotations from the dataset. Preprocess the images by resizing, normalizing, or applying any other necessary transformations. Convert the annotation bounding box coordinates to the appropriate format for training.; 3. Training Data Generation: Divide the dataset into training and validation sets. Generate training data by augmenting the images and annotations (e.g., flipping, rotating, zooming). Create data generators or data loaders to efficiently load the training data.; 4. Model Development: Choose a suitable deep learning model architecture for license plate detection, such as a convolutional neural network (CNN). Use TensorFlow and Keras to develop the model architecture. Compile the model with appropriate loss functions and optimization algorithms.; 5. Model Training: Train the model using the prepared training data. Monitor the training process by tracking metrics like loss and accuracy. Adjust the hyperparameters or model architecture as needed to improve performance.; 6. Model Evaluation: Evaluate the trained model using the validation set. Calculate relevant metrics like precision, recall, and F1 score. Make any necessary adjustments to the model based on the evaluation results.; 7. License Plate Detection: Use the trained model to detect license plates in new images. Apply any post-processing techniques to refine the detected regions. Extract the license plate regions and further process them if needed. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset. Here are the steps to perform sign language recognition using the Sign Language Digits Dataset: 1. Download the dataset from Kaggle: You can visit the Kaggle Sign Language Digits Dataset page (https://www.kaggle.com/ardamavi/sign-language-digits-dataset) and download the dataset.; 2. Extract the dataset: After downloading the dataset, extract the contents from the downloaded zip file to a suitable location on your local machine.; 3.Load the dataset: The dataset consists of two parts - images and a CSV file containing the corresponding labels. The images are stored in a folder, and the CSV file contains the image paths and labels.; 4. Preprocess the dataset: Depending on the specific requirements of your model, you may need to preprocess the dataset. This can include tasks such as resizing images, converting labels to numerical format, normalizing pixel values, or splitting the dataset into training and testing sets.; 5. Build a machine learning model: Use libraries such as TensorFlow and Keras to build a sign language recognition model. This typically involves designing the architecture of the model, compiling it with suitable loss functions and optimizers, and training the model on the preprocessed dataset.; 6. Evaluate the model: After training the model, evaluate its performance using appropriate evaluation metrics. This can help you understand how well the model is performing on the sign language recognition task.; 7. Make predictions: Once the model is trained and evaluated, you can use it to make predictions on new sign language images. Pass the image through the model, and it will predict the corresponding sign language digit. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Here's a general outline of the process: Data Preparation: Start by downloading the dataset from the Kaggle link you provided. Extract the dataset and organize it into appropriate folders (e.g., training and testing folders).; Import Libraries: Begin by importing the necessary libraries, including TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Data Loading and Preprocessing: Load the images and labels from the dataset. Since the dataset may come in different formats, it's essential to understand its structure and adjust the code accordingly. Use OpenCV to read the images and Pandas to load the labels.; Data Augmentation: Perform data augmentation techniques such as rotation, flipping, and scaling to increase the diversity of the training data and prevent overfitting. You can use the ImageDataGenerator class from Keras for this purpose.; Model Building: Define your neural network architecture using the Keras API with TensorFlow backend. You can start with a simple architecture like a convolutional neural network (CNN). Experiment with different architectures to achieve better performance.; Model Compilation: Compile your model by specifying the loss function, optimizer, and evaluation metric. For a binary classification problem like crack detection, you can use binary cross-entropy as the loss function and Adam as the optimizer.; Model Training: Train your model on the prepared dataset using the fit() method. Split your data into training and validation sets using train_test_split() from Scikit-Learn. Monitor the training progress and adjust hyperparameters as needed. Model Evaluation: Evaluate the performance of your trained model on the test set. Use appropriate evaluation metrics such as accuracy, precision, recall, and F1 score. Scikit-Learn provides functions for calculating these metrics.; Model Prediction: Use the trained model to predict crack detection on new unseen images. Load the test images, preprocess them if necessary, and use the trained model to make predictions.




Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI


Book Description

In this book, implement deep learning on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Here's an overview of the steps involved in detecting face masks using the Face Mask Detection Dataset: Import the necessary libraries: Import the required libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Load and preprocess the dataset: Load the dataset and perform any necessary preprocessing steps, such as resizing images and converting labels into numeric representations.; Split the dataset: Split the dataset into training and testing sets using the train_test_split function from Scikit-Learn. This will allow us to evaluate the model's performance on unseen data.; Data augmentation (optional): Apply data augmentation techniques to artificially increase the size and diversity of the training set. Techniques like rotation, zooming, and flipping can help improve the model's generalization.; Build the model: Create a Convolutional Neural Network (CNN) model using TensorFlow and Keras. Design the architecture of the model, including the number and type of layers.; Compile the model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. This prepares the model for training. Train the model: Train the model on the training dataset. Adjust the hyperparameters, such as the learning rate and number of epochs, to achieve optimal performance.; Evaluate the model: Evaluate the trained model on the testing dataset to assess its performance. Calculate metrics such as accuracy, precision, recall, and F1 score.; Make predictions: Use the trained model to make predictions on new images or video streams. Apply the face mask detection algorithm to identify whether a person is wearing a mask or not.; Visualize the results: Visualize the predictions by overlaying bounding boxes or markers on the images or video frames to indicate the presence or absence of face masks. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). To classify weather using the Multi-class Weather Dataset from Kaggle, you can follow these general steps: Load the dataset: Use libraries like Pandas or NumPy to load the dataset into memory. Explore the dataset to understand its structure and the available features.; Preprocess the data: Perform necessary preprocessing steps such as data cleaning, handling missing values, and feature engineering. This may include resizing images (if the dataset contains images) or encoding categorical variables.; Split the data: Split the dataset into training and testing sets. The training set will be used to train the model, and the testing set will be used for evaluating its performance.; Build a model: Utilize TensorFlow and Keras to define a suitable model architecture for weather classification. The choice of model depends on the type of data you have. For image data, convolutional neural networks (CNNs) often work well.; Train the model: Train the model using the training data. Use appropriate training techniques like gradient descent and backpropagation to optimize the model's weights.; Evaluate the model: Evaluate the trained model's performance using the testing data. Calculate metrics such as accuracy, precision, recall, or F1-score to assess how well the model performs.; Fine-tune the model: If the model's performance is not satisfactory, you can experiment with different hyperparameters, architectures, or regularization techniques to improve its performance. This process is called model tuning.; Make predictions: Once you are satisfied with the model's performance, you can use it to make predictions on new, unseen data. Provide the necessary input (e.g., an image or weather features) to the trained model, and it will predict the corresponding weather class. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Here are the general steps involved in recognizing flowers: Data Preparation: Download the Flowers Recognition dataset from Kaggle and extract the contents. Import the required libraries and define the dataset path and image dimensions.; Loading and Preprocessing the Data: Load the images and their corresponding labels from the dataset. Resize the images to a specific dimension. Perform label encoding on the flower labels and split the data into training and testing sets. Normalize the pixel values of the images.; Building the Model: Define the architecture of your model using TensorFlow's Keras API. You can choose from various neural network architectures such as CNNs, ResNet, or InceptionNet. The model architecture should be designed to handle image inputs and output the predicted flower class..; Compiling and Training the Model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. Common choices include categorical cross-entropy loss and the Adam optimizer. Train the model using the training set and validate it using the testing set. Adjust the hyperparameters, such as the learning rate and number of epochs, to improve performance.; Model Evaluation: Evaluate the trained model on the testing set to measure its performance. Calculate metrics such as accuracy, precision, recall, and F1-score to assess how well the model is recognizing flower classes.; Prediction: Use the trained model to predict the flower class for new images. Load and preprocess the new images in a similar way to the training data. Pass the preprocessed images through the trained model and obtain the predicted flower class labels.; Further Improvements: If the model's performance is not satisfactory, consider experimenting with different architectures, hyperparameters, or techniques such as data augmentation or transfer learning. Fine-tuning the model or using ensembles of models can also improve accuracy.