Punctured Torus Groups and 2-Bridge Knot Groups (I)


Book Description

Here is the first part of a work that provides a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization. It offers an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.




Imbeddings of Three-Manifold Groups


Book Description

This paper deals with the two broad questions of how 3-manifold groups imbed in one another and how such imbeddings relate to any corresponding [lowercase Greek]Pi1-injective maps. In particular, we are interested in 1) determining which 3-manifold groups are no cohopfian, that is, which 3-manifold groups imbed properly in themselves, 2) determining the knot subgroups of a knot group, and 3) determining when surgery on a knot [italic]K yields a lens (or "lens-like") space and the relationship of such a surgery to the knot-subgroup structure of [lowercase Greek]Pi1([italic]S3 - [italic]K). Our work requires the formulation of a deformation theorem for [lowercase Greek]Pi1-injective maps between certain kinds of Haken manifolds and the development of some algebraic tools.




2-Knots and Their Groups


Book Description

To attack certain problems in 4-dimensional knot theory the author draws on a variety of techniques, focusing on knots in S^T4, whose fundamental groups contain abelian normal subgroups. Their class contains the most geometrically appealing and best understood examples. Moreover, it is possible to apply work in algebraic methods to these problems. Work in four-dimensional topology is applied in later chapters to the problem of classifying 2-knots.




Groups, Languages and Automata


Book Description

Fascinating connections exist between group theory and automata theory, and a wide variety of them are discussed in this text. Automata can be used in group theory to encode complexity, to represent aspects of underlying geometry on a space on which a group acts, and to provide efficient algorithms for practical computation. There are also many applications in geometric group theory. The authors provide background material in each of these related areas, as well as exploring the connections along a number of strands that lead to the forefront of current research in geometric group theory. Examples studied in detail include hyperbolic groups, Euclidean groups, braid groups, Coxeter groups, Artin groups, and automata groups such as the Grigorchuk group. This book will be a convenient reference point for established mathematicians who need to understand background material for applications, and can serve as a textbook for research students in (geometric) group theory.




Transformation Groups


Book Description




Braid Groups


Book Description

In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices. Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.




Knots and Links


Book Description

Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""




History And Science Of Knots


Book Description

This book brings together twenty essays on diverse topics in the history and science of knots. It is divided into five parts, which deal respectively with knots in prehistory and antiquity, non-European traditions, working knots, the developing science of knots, and decorative and other aspects of knots.Its authors include archaeologists who write on knots found in digs of ancient sites (one describes the knots used by the recently discovered Ice Man); practical knotters who have studied the history and uses of knots at sea, for fishing and for various life support activities; a historian of lace; a computer scientist writing on computer classification of doilies; and mathematicians who describe the history of knot theories from the eighteenth century to the present day.In view of the explosion of mathematical theories of knots in the past decade, with consequential new and important scientific applications, this book is timely in setting down a brief, fragmentary history of mankind's oldest and most useful technical and decorative device — the knot.




New Ideas In Low Dimensional Topology


Book Description

This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.




Groups with the Haagerup Property


Book Description

A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. This book is to covers various aspects of the Haagerup property. It gives several new examples.