Knowledge Engineering


Book Description

Using robust software, this book focuses on learning assistants for evidence-based reasoning that learn complex problem solving from humans.




An Introduction to Knowledge Engineering


Book Description

An Introduction to Knowledge Engineering presents a simple but detailed exp- ration of current and established work in the ?eld of knowledge-based systems and related technologies. Its treatment of the increasing variety of such systems is designed to provide the reader with a substantial grounding in such techno- gies as expert systems, neural networks, genetic algorithms, case-based reasoning systems, data mining, intelligent agents and the associated techniques and meth- ologies. The material is reinforced by the inclusion of numerous activities that provide opportunities for the reader to engage in their own research and re?ection as they progress through the book. In addition, self-assessment questions allow the student to check their own understanding of the concepts covered. The book will be suitable for both undergraduate and postgraduate students in computing science and related disciplines such as knowledge engineering, arti?cial intelligence, intelligent systems, cognitive neuroscience, robotics and cybernetics. vii Contents Foreword vii 1 An Introduction to Knowledge Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section 1: Data, Information and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Section 2: Skills of a Knowledge Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Section 3: An Introduction to Knowledge-Based Systems. . . . . . . . . . . . . . . . . 18 2 Types of Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Section 1: Expert Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Section 2: Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Section 3: Case-Based Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 4: Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Section 5: Intelligent Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Section 6: Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Knowledge Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Knowledge Representation and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 1: Using Knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Section 2: Logic, Rules and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Section 3: Developing Rule-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Section 4: Semantic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Knowledge Engineering and Management


Book Description

The disciplines of knowledge engineering and knowledge management are closely tied. Knowledge engineering deals with the development of information systems in which knowledge and reasoning play pivotal roles. Knowledge management, a newly developed field at the intersection of computer science and management, deals with knowledge as a key resource in modern organizations. Managing knowledge within an organization is inconceivable without the use of advanced information systems; the design and implementation of such systems pose great organization as well as technical challenges.




Knowledge Engineering for Modern Information Systems


Book Description

Knowledge Engineering (KE) is a field within artificial intelligence that develops knowledgebased systems. KE is the process of imitating how a human expert in a specific domain would act and take decisions. It contains large amounts of knowledge, like metadata and information about a data object that describes characteristics such as content, quality, and format, structure and processes. Such systems are computer programs that are the basis of how a decision is made or a conclusion is reached. It is having all the rules and reasoning mechanisms to provide solutions to real-world problems. This book presents an extensive collection of the recent findings and innovative research in the information system and KE domain. Highlighting the challenges and difficulties in implementing these approaches, this book is a critical reference source for academicians, professionals, engineers, technology designers, analysts, undergraduate and postgraduate students in computing science and related disciplines such as Information systems, Knowledge Engineering, Intelligent Systems, Artifi cial Intelligence, Cognitive Neuro - science, and Robotics. In addition, anyone who is interested or involved in sophisticated information systems and knowledge engineering developments will find this book a valuable source of ideas and guidance.




The Engineering of Knowledge-based Systems


Book Description

This volume provides comprehensive single-volume coverage of both the theory and the applications of knowledge-based systems.




Advances In Software Engineering And Knowledge Engineering


Book Description

The papers collected in the book were invited by the editors as tutorial courses or keynote speeches for the Fourth International Conference on Software Engineering and Knowledge Engineering. It was the editors' intention that this book should offer a wide coverage of the main topics involved with the specifications, prototyping, development and maintenance of software systems and knowledge-based systems. The main issues in the area of software engineering and knowledge engineering are addressed and for each analyzed topic the corresponding of state research is reported.




Guide to the Software Engineering Body of Knowledge (Swebok(r))


Book Description

In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).




Knowledge Management


Book Description

Knowledge Management (KM) is strongly rooted in the discipline of Knowledge Engineering (KE), which in turn grew partly out of the artificial intelligence field. Despite their close relationship, however, many KM specialists have failed to fully recognize the synergy or acknowledge the power that KE methodologies, techniques, and tools hold for enh




Knowledge Engineering


Book Description

Knowledge management is far-reaching. It can dramatically reduce costs such as costs of office work repetition, human resource retirement, information reuse, etc. Rather than "reinventing the wheel" and having it be a costly and inefficient activity, systematic reuse of knowledge can show substantial cost benefits immediately. This book shows how to develop process-oriented methodologies, covers both interorganizational and enterprises models, discusses how knowledge management can dramatically reduce costs and increase speed of response, presents a wide range of quantitative methods applied to various knowledge engineering problems, and offers several graphical presentations of models and processes. Academicians and practitioners in the area of knowledge management and engineering, especially managers in industries will fine this book useful. The material might also be useful in knowledge management graduate studies.




Advances in Knowledge-based and Intelligent Information and Engineering Systems


Book Description

In this 2012 edition of Advances in Knowledge-Based and Intelligent Information and Engineering Systems the latest innovations and advances in Intelligent Systems and related areas are presented by leading experts from all over the world. The 228 papers that are included cover a wide range of topics. One emphasis is on Information Processing, which has become a pervasive phenomenon in our civilization. While the majority of Information Processing is becoming intelligent in a very broad sense, major research in Semantics, Artificial Intelligence and Knowledge Engineering supports the domain specific applications that are becoming more and more present in our everyday living. Ontologies play a major role in the development of Knowledge Engineering in various domains, from Semantic Web down to the design of specific Decision Support Systems. Research on Ontologies and their applications is a highly active front of current Computational Intelligence science that is addressed here. Other subjects in this volume are modern Machine Learning, Lattice Computing and Mathematical Morphology.The wide scope and high quality of these contributions clearly show that knowledge engineering is a continuous living and evolving set of technologies aimed at improving the design and understanding of systems and their relations with humans.