Exploiting Semantic Web Knowledge Graphs in Data Mining


Book Description

Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.




Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence


Book Description

This book constitutes the refereed proceedings of the 8th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence, CCKS 2023, held in Shenyang, China, during August 24–27, 2023. The 28 full papers included in this book were carefully reviewed and selected from 106 submissions. They were organized in topical sections as follows: ​knowledge representation and knowledge graph reasoning; knowledge acquisition and knowledge base construction; knowledge integration and knowledge graph management; natural language understanding and semantic computing; knowledge graph applications; knowledge graph open resources; and evaluations.




Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data


Book Description

This book constitutes the refereed proceedings of the first China Conference on Knowledge Graph and Semantic Computing, CCKS, held in Beijing, China, in September 2016. The 19 revised full papers presented together with 6 shared tasks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on knowledge representation and learning; knowledge graph construction and information extraction; linked data and knowledge-based systems; shared tasks.




Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction


Book Description

This book constitutes the refereed proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing, CCKS 2021, held in Guangzhou, China, in November 2021. The 19 revised full papers and 9 short papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on ​knowledge extraction: knowledge graph representation and reasoning; knowledge acquisition and knowledge graph construction; linked data, knowledge integration, and knowledge graph storage management; natural language understanding and semantic computing; knowledge graph applications: semantic search, question answering, dialogue, decision support, and recommendation; knowledge graph open resources.




Knowledge Graphs and Semantic Web


Book Description

This book constitutes the thoroughly refereed proceedings of the Third Iberoamerican Conference, KGSWC 2021, held in Kingsville, Texas, USA, in November 2021.* The 22 full and 2 short papers presented were carefully reviewed and selected from 85 submissions. The papers cover topics related to software and its engineering, information systems, software creation and management, World Wide Web, web data description languages, and others. *Due to the Covid-19 pandemic the conference was held virtually.




Knowledge Graph and Semantic Computing: Knowledge Graph Empowers the Digital Economy


Book Description

This book constitutes the refereed proceedings of the 7th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers the Digital Economy, CCKS 2022, in Qinhuangdao, China, August 24–27, 2022. The 15 full papers and 2 short papers included in this book were carefully reviewed and selected from 100 submissions. They were organized in topical sections as follows: knowledge representation and reasoning; knowledge acquisition and knowledge base construction; linked data, knowledge integration, and knowledge graph storage managements; natural language understanding and semantic computing; knowledge graph applications; and knowledge graph open resources.




Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence


Book Description

This book constitutes the refereed proceedings of the 5th China Conference on Knowledge Graph and Semantic Computing, CCKS 2020, held in Nanchang, China, in November 2020. The 26 revised full papers presented were carefully reviewed and selected from 173 submissions. The papers are organized in topical sections on ​knowledge extraction: lexical and entity; knowledge extraction: relation; knowledge extraction: event; knowledge applications: question answering, dialogue, decision support, and recommendation.




Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding


Book Description

This book constitutes the refereed proceedings of the 4th China Conference on Knowledge Graph and Semantic Computing, CCKS 2019, held in Hangzhou, China, in August 2019. The 18 revised full papers presented were carefully reviewed and selected from 140 submissions. The papers cover wide research fields including the knowledge graph, the semantic Web, linked data, NLP, information extraction, knowledge representation and reasoning.




Knowledge Graphs


Book Description

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.




Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence


Book Description

This book constitutes the refereed proceedings of the Second China Conference on Knowledge Graph and Semantic Computing, CCKS 2017, held in Chengdu, China, in August 2017. The 11 revised full papers and 6 revised short papers presented were carefully reviewed and selected from 85 submissions. The papers cover wide research fields including the knowledge graph, the Semantic Web, linked data, NLP, knowledge representation, graph databases.