Knowledge Graph and Semantic Computing: Knowledge Graph Empowers the Digital Economy


Book Description

This book constitutes the refereed proceedings of the 7th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers the Digital Economy, CCKS 2022, in Qinhuangdao, China, August 24–27, 2022. The 15 full papers and 2 short papers included in this book were carefully reviewed and selected from 100 submissions. They were organized in topical sections as follows: knowledge representation and reasoning; knowledge acquisition and knowledge base construction; linked data, knowledge integration, and knowledge graph storage managements; natural language understanding and semantic computing; knowledge graph applications; and knowledge graph open resources.




Knowledge Graph and Semantic Computing


Book Description

This book constitutes the refereed proceedings of the 7th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers the Digital Economy, CCKS 2022, in Qinhuangdao, China, August 24-27, 2022. The 15 full papers and 2 short papers included in this book were carefully reviewed and selected from 100 submissions. They were organized in topical sections as follows: knowledge representation and reasoning; knowledge acquisition and knowledge base construction; linked data, knowledge integration, and knowledge graph storage managements; natural language understanding and semantic computing; knowledge graph applications; and knowledge graph open resources.




Knowledge Graphs


Book Description

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.




The Routledge Companion to Knowledge Management


Book Description

Knowledge when properly leveraged and harnessed contributes to effective organizational performance. How much an organization benefits from knowledge would depend on how well knowledge has been managed. There have been challenges to implementing knowledge management in today’s dramatically different world from before. This comprehensive reference work is a timely guide to understanding knowledge management. The book covers key themes of knowledge management which includes the basic framework of knowledge management and helps readers to understand the state of art of knowledge management both from the aspects of theory and practice, from the perspectives of strategy, organization, resources, as well as institution and organizational culture. This reference work reflects the increasingly important role of both philosophy and digital technologies in knowledge management research and practice. This handbook will be an essential resource for knowledge management scholars, researchers and graduate students.




Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence


Book Description

This book constitutes the refereed proceedings of the 8th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence, CCKS 2023, held in Shenyang, China, during August 24–27, 2023. The 28 full papers included in this book were carefully reviewed and selected from 106 submissions. They were organized in topical sections as follows: ​knowledge representation and knowledge graph reasoning; knowledge acquisition and knowledge base construction; knowledge integration and knowledge graph management; natural language understanding and semantic computing; knowledge graph applications; knowledge graph open resources; and evaluations.




Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction


Book Description

This book constitutes the refereed proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing, CCKS 2021, held in Guangzhou, China, in November 2021. The 19 revised full papers and 9 short papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on ​knowledge extraction: knowledge graph representation and reasoning; knowledge acquisition and knowledge graph construction; linked data, knowledge integration, and knowledge graph storage management; natural language understanding and semantic computing; knowledge graph applications: semantic search, question answering, dialogue, decision support, and recommendation; knowledge graph open resources.




Knowledge Graphs


Book Description

This book describes methods and tools that empower information providers to build and maintain knowledge graphs, including those for manual, semi-automatic, and automatic construction; implementation; and validation and verification of semantic annotations and their integration into knowledge graphs. It also presents lifecycle-based approaches for semi-automatic and automatic curation of these graphs, such as approaches for assessment, error correction, and enrichment of knowledge graphs with other static and dynamic resources. Chapter 1 defines knowledge graphs, focusing on the impact of various approaches rather than mathematical precision. Chapter 2 details how knowledge graphs are built, implemented, maintained, and deployed. Chapter 3 then introduces relevant application layers that can be built on top of such knowledge graphs, and explains how inference can be used to define views on such graphs, making it a useful resource for open and service-oriented dialog systems. Chapter 4 discusses applications of knowledge graph technologies for e-tourism and use cases for other verticals. Lastly, Chapter 5 provides a summary and sketches directions for future work. The additional appendix introduces an abstract syntax and semantics for domain specifications that are used to adapt schema.org to specific domains and tasks. To illustrate the practical use of the approaches presented, the book discusses several pilots with a focus on conversational interfaces, describing how to exploit knowledge graphs for e-marketing and e-commerce. It is intended for advanced professionals and researchers requiring a brief introduction to knowledge graphs and their implementation.




Graph Structures for Knowledge Representation and Reasoning


Book Description

This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities.




Geographic Knowledge Graph Summarization


Book Description

Geographic knowledge graphs can have an important role in delivering interoperability, accessibility and the demands of conceptualization in geographic information science (GIS). However, the massive amount of accompanying information and the enormous diversity of geographic knowledge graphs limits their applicability and hinders the widespread adoption of this useful structured knowledge. This book, Geographic Knowledge Graph Summarization, focuses on the ways in which geographic knowledge graphs can be digested and summarized. Such a summarization would relieve the burden of information overload for end users and reduce data storage, as well as speeding up queries and eliminating ‘noise’. The book introduces the general concept of geospatial inductive bias and explains the different ways in which this idea can be used in the summarization of geographic knowledge graphs. The book breaks up the task of summarization into separate but related components, and after an introduction and a brief overview of concepts and theories, Chapters 3, 4 and 5 explore hierarchical place type structure, multimedia leaf nodes, and general relation and entity components respectively. Chapter 6 presents a spatial knowledge map interface which illustrates the effectiveness of summarization. The book integrates top-down knowledge engineering and bottom-up knowledge learning methods, and will do much to promote awareness of this fascinating area and related issues.




Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance


Book Description

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.