Knowledge in a Nutshell: Quantum Physics


Book Description

Quantum theory is at the heart of modern physics, but how does it actually work? NASA scientist and communicator Sten Odenwald demystifies the subject and makes this crucial topic accessible to everyone. Featuring topics such as Schrodinger's cat, the wave-particle duality and the newly emerging theories of quantum gravity, as well as the personalities behind the science, such as Max Planck, Neils Bohr, Werner Heisenberg, Richard Feynman and many more, Knowledge in a Nutshell: Quantum Physics provides an essential introduction to cutting edge science. Presented in an easy-to-understand format, with diagrams, illustrations and simple summary sections at the end of each chapter, this new addition to the 'Knowledge in a Nutshell' series brings clarity to some of the great mysteries of physics. ABOUT THE SERIES: The 'Knowledge in a Nutshell' series by Arcturus Publishing provides engaging introductions to many fields of knowledge, including philosophy, psychology and physics, and the ways in which human kind has sought to make sense of our world.




Quantum Field Theory in a Nutshell


Book Description

A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University




Quantum Mechanics in a Nutshell


Book Description

Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, the book proceeds from solving for the properties of a single particle in potential; to solving for two particles (the helium atom); to addressing many-particle systems. Applications include electron gas, magnetism, and Bose-Einstein Condensation; examples are carefully chosen and worked; and each chapter has numerous homework problems, many of them original. Quantum Mechanics in a Nutshell expertly addresses traditional and modern topics, including perturbation theory, WKBJ, variational methods, angular momentum, the Dirac equation, many-particle wave functions, Casimir Force, and Bell's Theorem. And it treats many topics--such as the interactions between photons and electrons, scattering theory, and density functional theory--in exceptional depth. A valuable addition to the teaching literature, Quantum Mechanics in a Nutshell is ideally suited for a two-semester course. The most concise, up-to-date, and accessible graduate textbook on the subject Contains the ideal amount of material for a two-semester course Focuses on the description of actual quantum systems, including a range of applications Covers traditional topics, as well as those at the frontiers of research Treats in unprecedented detail topics such as photon-electron interaction, scattering theory, and density functional theory Includes numerous homework problems at the end of each chapter




Beyond Weird


Book Description

“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.




Mind-Body Problems


Book Description

Science journalist John Horgan presents a radical new perspective on the mind-body problem and related issues such as consciousness, free will, morality and the meaning of life. Horgan argues that science will never discover an objectively true solution to the mind-body problem because such a solution does not exist. Horgan explores his thesis by delving into the professional and personal lives of nine mind-body experts, including neuroscientist Christof Koch, cognitive scientist Douglas Hofstadter, child psychologist Alison Gopnik, complexologist Stuart Kauffman, legal scholar and psychoanalyst Elyn Saks, philosopher Owen Flanagan, novelist Rebecca Goldstein, evolutionary biologist Robert Trivers, and economist Deirdre McCloskey.




Atomic Physics and Human Knowledge


Book Description

This collection of articles, which were first published in 1958 and written on various occasions between 1932 and 1957, forms a sequel to Danish physician Niels Bohr’s earlier essays in Atomic Theory and the Description of Nature (1934). “The theme of the papers is the epistemological lesson which the modern development of atomic physics has given us and its relevance for analysis and synthesis in many fields of human knowledge. “The articles in the previous edition were written at a time when the establishment of the mathematical methods of quantum mechanics had created a firm foundation for the consistent treatment of atomic phenomena, and the conditions for an unambiguous account of experience within this framework were characterized by the notion of complementarity. In the papers collected here, this approach is further developed in logical formulation and given broader application.”




Incertaine Réalité


Book Description

This book investigates the nature of reality from the viewpoint of a physicist. Contemporary physics, especially quantum theory, has raised profound questions about the relationship between the methods of science and the reality these methods seek to investigate. These questions, and how we should answer them, are the subject of this book. Part I examines the practices of contemporary physicists and addresses the criticisms that philosophers of science have made of these practices. The doctrine of physical realism, adopted by most physicists and many philosophers of science, is subjected to detailed investigation in Part II. When tested against recent discoveries and developments in physics, it is shown to be in considerable difficulty. Part III explores the consequences of this for our understanding of what science can seek to know of reality, and concludes by outlining the position contemporary physics indicates we should take on the nature of reality generally considered.




What Is Real?


Book Description

"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post




Knowledge in a Nutshell: Astrophysics


Book Description

Whether searching for extra-terrestrial life, managing the effects of space weather or learning about dark matter, the study astrophysics has profound implications for us all. NASA scientist and astronomer Sten Odenwald explains the key concepts of this vast topic, bringing clarity to some of the great mysteries of space. These include: • The theory of relativity • Cosmic background radiation • The evolution of stars • The formation of the solar system • The nature of exoplanets • Space weather systems Filled with helpful diagrams and simple summaries, Knowledge in a Nutshell: Astrophysics is perfect for the non-expert, taking the complexities of space science and making them tangible. ABOUT THE SERIES The 'Knowledge in a Nutshell' series by Arcturus Publishing provides engaging introductions to many fields of knowledge, including philosophy, psychology and physics, and the ways in which human kind has sought to make sense of our world.




Quantum Philosophy


Book Description

In this magisterial work, Roland Omnès takes us from the academies of ancient Greece to the laboratories of modern science as he seeks to do no less than rebuild the foundations of the philosophy of knowledge. One of the world's leading quantum physicists, Omnès reviews the history and recent development of mathematics, logic, and the physical sciences to show that current work in quantum theory offers new answers to questions that have puzzled philosophers for centuries: Is the world ultimately intelligible? Are all events caused? Do objects have definitive locations? Omnès addresses these profound questions with vigorous arguments and clear, colorful writing, aiming not just to advance scholarship but to enlighten readers with no background in science or philosophy. The book opens with an insightful and sweeping account of the main developments in science and the philosophy of knowledge from the pre-Socratic era to the nineteenth century. Omnès then traces the emergence in modern thought of a fracture between our intuitive, commonsense views of the world and the abstract and--for most people--incomprehensible world portrayed by advanced physics, math, and logic. He argues that the fracture appeared because the insights of Einstein and Bohr, the logical advances of Frege, Russell, and Gödel, and the necessary mathematics of infinity of Cantor and Hilbert cannot be fully expressed by words or images only. Quantum mechanics played an important role in this development, as it seemed to undermine intuitive notions of intelligibility, locality, and causality. However, Omnès argues that common sense and quantum mechanics are not as incompatible as many have thought. In fact, he makes the provocative argument that the "consistent-histories" approach to quantum mechanics, developed over the past fifteen years, places common sense (slightly reappraised and circumscribed) on a firm scientific and philosophical footing for the first time. In doing so, it provides what philosophers have sought through the ages: a sure foundation for human knowledge. Quantum Philosophy is a profound work of contemporary science and philosophy and an eloquent history of the long struggle to understand the nature of the world and of knowledge itself.