Knowledge Representation, Reasoning, and the Design of Intelligent Agents


Book Description

Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.




Knowledge Representation, Reasoning, and the Design of Intelligent Agents


Book Description

This in-depth introduction for students and researchers shows how to use ASP for intelligent tasks, including answering queries, planning, and diagnostics.




Knowledge Representation and Reasoning


Book Description

Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.







Building Intelligent Agents


Book Description

Building Intelligent Agents is unique in its comprehensive coverage of the subject. The first part of the book presents an original theory for building intelligent agents and a methodology and tool that implement the theory. The second part of the book presents complex and detailed case studies of building different types of agents: an educational assessment agent, a statistical analysis assessment and support agent, an engineering design assistant, and a virtual military commander. Also featured in this book is Disciple, a toolkit for building interactive agents which function in much the same way as a human apprentice. Disciple-based agents can reason both with incomplete information, but also with information that is potentially incorrect. This approach, in which the agent learns its behavior from its teacher, integrates many machine learning and knowledge acquisition techniques, taking advantage of their complementary strengths to compensate for each others weakness. As a consequence, it significantly reduces (or even eliminates) the involvement of a knowledge engineer in the process of building an intelligent agent.




Handbook of Knowledge Representation


Book Description

Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily




Answer Set Solving in Practice


Book Description

Answer Set Programming (ASP) is a declarative problem solving approach, initially tailored to modelling problems in the area of Knowledge Representation and Reasoning (KRR). This book presents a practical introduction to ASP. It introduces ASP's solving technology, modelling language and methodology, while illustrating the overall solving process with practical examples.




Agent Technology


Book Description

The first book to provide an integrative presentation of the issues, challenges and success of designing, building and using agent applications. The chapters presented are written by internationally leading authorities in the field, with a general audience in mind. The result is a unique overview of agent technology applications, ranging from an introduction to the technical foundations to reports on dealing with specific agent systems in practice.




Readings in Knowledge Representation


Book Description

In Artificial Intelligence, it is often said that the representation of knowledge is the key to the design of robust intelligent systems. In one form or another the principles of Knowledge Representation are fundamental to work in natural language processing, computer vision, knowledge-based expert systems, and other areas. The papers reprinted in this volume have been collected to allow the reader with a general technical background in AI to explore the subtleties of this key subarea. These seminal articles, spanning a quarter-century of research, cover the most important ideas and developments in the representation field. The editors introduce each paper, discuss its relevance and context, and provide an extensive bibliography of other work. "Readings in Knowledge Representation" is intended to serve as a complete sourcebook for the study of this crucial subject.




Multi-Agent-Systems and Applications II


Book Description

This book presents a collection of thoroughly refereed papers drawn together from three meetings on multi-agent systems. Five of the tutorial lectures included were presented at the ACAI/EASSS 2001 summer school on MAS, held in Prague, Czech Republic, in July 2001; seven revised reviewed student papers dealing with various aspects of MAS are included as well. A workshop on Adaptability and Embodiment using MAS, AEMAS 2001, also held in Prague, Czech Republic, concurrently with the ACAI/EASSS summer school, is represented by three papers. Finally, a further nine papers were selected from an International Workshop on Industrial Applications of Holonic and Multi-Agent Systems, HoloMAS 2001, held in Munich, Germany, in September 2001.