La Genese Des Nodules de Manganese


Book Description




The Geochemistry of Manganese and Manganese Nodules in the Ocean


Book Description

Manganese nodules were first discovered on the ocean floor 160 miles south-west of the Canary Islands on February 18, 1803, during the first complex oceano logical cruise of the Challenger. They surprised researchers by their unusual shape and also by their unusual chemical composition; nevertheless for many years after wards, they were considered merely as one of Nature's exotic marine tricks. After the Secpnd World War, a comprehensive investigation of the World Ocean started, and new data were obtained on a wide distribution of manganese nodules and their polymetallic composition, that made scientists consider nodules as one of the major characteristics of the deep oceanic zone. Recently, meaning since the 1960's, nodules have been recognized as a potential ore source, investigation of which is stimulated by the progressive depletion of land-based mineral resources. Several generations of scientists from various countries have contributed to the problem of exploration of manganese nodules on the ocean floor. Though the problem has been posed, it has not been solved yet because it required, in its turn, a scrutiny of some fundamental aspects such as composition, nature, accretion r'ate of nodules and retrieval of nodule fields. These problems have been discussed in thousands of papers and larger publications; see, in particulare, Mero, 1965; Horn, 1972; Morgenstein, 1973; Bezrukov, 1976; Glasby, 1977; Bischoff and Piper, 1979; Lalou, 1979; Manganese nodules, 1979; Varentsov, 1980; Cronan, 1980; Manganese nodules . . . , 1984, 1986.




Marine Geology and Oceanography of the Pacific Manganese Nodule Province


Book Description

Deep-sea manganese nodules, once an obscure scientific curios ity, have, in the brief span of two decades, become a potential mineral resource of major importance. Nodules that cover the sea floor of the tropical North Pacific may represent a vast ore de posit of manganese, nickel, cobalt, and copper. Modern technology has apparently surmounted the incredible problem of recovering nodules in water depths of 5000 meters and the extraction of metals from the complex chemical nodule matrix is a reality. Both the recovery and the extraction appear to be economically feasible. Exploitation of this resource is, however, hindered more by the lack of an international legal structure allowing for recognition of mining sites and exploitation rights, than by any other factor. Often, when a mineral deposit becomes identified as an ex ploitable resource, scientific study burgeons. Interest in the nature and genesis of the deposit increases and much is learned from large scale exploration. The case is self evident for petrol eum and ore deposits on land. The study of manganese nodules is just now entering this phase. What was the esoteric field of a few scientists has become the subject of active exploration and research by most of the industrialized nations. Unfortunately for our general understanding of manganese nodules, exploration results remain largely proprietary. However, scientific study has greatly increased and the results are becoming widely available.













Marine Manganese Deposits


Book Description

Marine Manganese Deposits




Toxic Metal Chemistry in Marine Environments


Book Description

Presents an integrated chemical behavior of selected toxic metals: arsenic, cadmium, chromium, copper, mercury, and lead. All important processes that may affect their marine chemistry are discussed. Thermodynamic calculations are performed to propose the most probable route of chemical behavior. Th




Marine Geochemistry


Book Description

A summary of the latest research in this field. The topics comprise the sedimentological examination and physical properties of the sedimentary solid phase, pore water and pore water constituents, organic matter as the driving force of most microbiological processes, biotic and abiotic redox reactions, carbonates and stable isotopes as proxies for paleoclimate reconstruction, metal enrichments in ferromanganese nodules and crusts as well as in hot vents and cold seeps on the seafloor. The current model conceptions lead to the development of different types of computer models, allowing the global mass exchanges between oceans and sediments to be balanced.