Ladder Polymers


Book Description

Ladder Polymers An essential reference covering the latest research on ladder polymers Ladder polymers are a unique macromolecular architecture, consisting of a continuous strand of fused rings in their backbones. Such distinctive structures lead to a range of interesting thermal, optical, and electronic properties and self-assembly behaviors, which have been explored for various applications. The book Ladder Polymers: Synthesis, Properties, Applications, and Perspectives presents a collection of diverse topics in ladder polymers consisting of historical overview, state-of-the-art research and development, and potential future directions, written by leading researchers in the related fields. The topics include: Conjugated ladder polymers and graphene nanoribbons Nonconjugated microporous ladder polymers or polymers of intrinsic microporosity Covalent double-stranded polymers Supramolecular double-helical polymers and oligomers Two dimensional polymers This book is a one-stop resource on all the critical research developments in the subject of ladder polymers for broad readership including organic, polymer, and physical chemists, materials scientists and engineers, and chemical engineers.







Concise Polymeric Materials Encyclopedia


Book Description

Concise Polymeric Materials Encyclopedia culls the most used, widely applicable articles from the Polymeric Materials Encyclopedia - more than 1,100 - and presents them to you in a condensed, well-ordered format. Featuring contributions from more than 1,800 scientists from all over the world, the book discusses a vast array of subjects related to the: synthesis, properties, and applications of polymeric materials development of modern catalysts in preparing new or modified polymers modification of existing polymers by chemical and physical processes biologically oriented polymers This comprehensive, easy-to-use resource on modern polymeric materials serves as an invaluable addition to reference collections in the polymer field.




Handbook of Conducting Polymers, Second Edition,


Book Description

Discussing theory and transport, synthesis, processing, properties, and applications, this second edition of a standard resource covers advances in the field of electrically conducting polymers and contains more than 1500 drawings, photographs, tables, and equations. Maintaining the style of presentation and depth of coverage that made the first edition so popular, it contains the authoritative contributions of an interdisciplinary team of world-renowned experts encompassing the fields of chemistry, physics, materials science, and engineering. The Handbook of Conducting Polymers highlights progress, delineates improvements, and examines novel tools for polymer and materials scientists..




Star and Hyperbranched Polymers


Book Description

Synthesizing the raw data needed for a wide variety of industrial applications, this work supplies up-to-date advanced in research on star, hyperbranched and dendritic polymers. It provides detailed descriptions of the size and shape of the molecules that make up these polymers, as well as their biological advances, low viscosity in solution and substrate-holding properties.




The Essential Handbook of Polymer Terms and Attributes


Book Description

The Essential Handbook of Polymer Terms and Attributes not only acts as an encyclopaedia of polymer science but also fosters an appreciation for the significance of polymers in fields including materials science, chemistry, engineering, and medicine. This book serves as an excellent reference book, covering every possible term and attribution associated with the vast and diverse field of polymers. This comprehensive volume serves as a vital resource for researchers working in industry and academia, offering a clear and concise exploration of polymer science with the most essential reference data available. Each polymer term is defined in a straightforward manner, ensuring that readers of all levels can grasp the concepts. The book goes beyond mere definitions, providing context and insights into the applications, properties, and synthesis. Bringing polymer terms and attributes together in one place, the book provides a broad knowledge of polymer science and facilitates idea generation for researchers and students embarking on projects related to a specific field of polymer science. Key features: This book covers all possible terms associated with the field of “polymers" and related areas, granting readers a comprehensive understanding of the entire spectrum of polymers. The organization of the book follows an alphabetical format, enabling quick and convenient access to specific terms. Each polymer term is clearly defined with a figure or scheme as needed, allowing readers to visualize the structures, processes, and applications involved. This book is written for science students, chemists, polymer scientists, chemical engineers, pharmaceutical scientists, biomedical scientists, biotechnologists, product formulators, materials scientists, and scientists working on polymers.




NASA Technical Note


Book Description







Conjugated Polymers for Organic Electronics


Book Description

Covers the chemistry and physics of conjugated polymers, and how they can be designed and optimised for various electronic applications.




Nonlinear Optical Effects in Organic Polymers


Book Description

Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.