Lambda-calculus, Combinators and Functional Programming


Book Description

Originally published in 1988, this book presents an introduction to lambda-calculus and combinators without getting lost in the details of mathematical aspects of their theory. Lambda-calculus is treated here as a functional language and its relevance to computer science is clearly demonstrated. The main purpose of the book is to provide computer science students and researchers with a firm background in lambda-calculus and combinators and show the applicabillity of these theories to functional programming. The presentation of the material is self-contained. It can be used as a primary text for a course on functional programming. It can also be used as a supplementary text for courses on the structure and implementation of programming languages, theory of computing, or semantics of programming languages.




Lambda-Calculus and Combinators


Book Description

Combinatory logic and lambda-calculus, originally devised in the 1920's, have since developed into linguistic tools, especially useful in programming languages. The authors' previous book served as the main reference for introductory courses on lambda-calculus for over 20 years: this long-awaited new version is thoroughly revised and offers a fully up-to-date account of the subject, with the same authoritative exposition. The grammar and basic properties of both combinatory logic and lambda-calculus are discussed, followed by an introduction to type-theory. Typed and untyped versions of the systems, and their differences, are covered. Lambda-calculus models, which lie behind much of the semantics of programming languages, are also explained in depth. The treatment is as non-technical as possible, with the main ideas emphasized and illustrated by examples. Many exercises are included, from routine to advanced, with solutions to most at the end of the book.




An Introduction to Functional Programming Through Lambda Calculus


Book Description

Well-respected text for computer science students provides an accessible introduction to functional programming. Cogent examples illuminate the central ideas, and numerous exercises offer reinforcement. Includes solutions. 1989 edition.




Introduction to Combinators and (lambda) Calculus


Book Description

Combinatory logic and lambda-conversion were originally devised in the 1920s for investigating the foundations of mathematics using the basic concept of 'operation' instead of 'set'. They have now developed into linguistic tools, useful in several branches of logic and computer science, especially in the study of programming languages. These notes form a simple introduction to the two topics, suitable for a reader who has no previous knowledge of combinatory logic, but has taken an undergraduate course in predicate calculus and recursive functions. The key ideas and basic results are presented, as well as a number of more specialised topics, and man), exercises are included to provide manipulative practice.




Lambda Calculus with Types


Book Description

This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.




To Mock a Mockingbird


Book Description

The author of Forever Undecided, Raymond Smullyan continues to delight and astonish us with his gift for making available, in the thoroughly pleasurable form of puzzles, some of the most important mathematical thinking of our time.




The Lambda Calculus


Book Description

The revised edition contains a new chapter which provides an elegant description of the semantics. The various classes of lambda calculus models are described in a uniform manner. Some didactical improvements have been made to this edition. An example of a simple model is given and then the general theory (of categorical models) is developed. Indications are given of those parts of the book which can be used to form a coherent course.




Understanding Computation


Book Description

Finally, you can learn computation theory and programming language design in an engaging, practical way. Understanding Computation explains theoretical computer science in a context you’ll recognize, helping you appreciate why these ideas matter and how they can inform your day-to-day programming. Rather than use mathematical notation or an unfamiliar academic programming language like Haskell or Lisp, this book uses Ruby in a reductionist manner to present formal semantics, automata theory, and functional programming with the lambda calculus. It’s ideal for programmers versed in modern languages, with little or no formal training in computer science. Understand fundamental computing concepts, such as Turing completeness in languages Discover how programs use dynamic semantics to communicate ideas to machines Explore what a computer can do when reduced to its bare essentials Learn how universal Turing machines led to today’s general-purpose computers Perform complex calculations, using simple languages and cellular automata Determine which programming language features are essential for computation Examine how halting and self-referencing make some computing problems unsolvable Analyze programs by using abstract interpretation and type systems







Categorical Combinators, Sequential Algorithms, and Functional Programming


Book Description

This book is a revised edition of the monograph which appeared under the same title in the series Research Notes in Theoretical Computer Science, Pit man, in 1986. In addition to a general effort to improve typography, English, and presentation, the main novelty of this second edition is the integration of some new material. Part of it is mine (mostly jointly with coauthors). Here is brief guide to these additions. I have augmented the account of categorical combinatory logic with a description of the confluence properties of rewriting systems of categor ical combinators (Hardin, Yokouchi), and of the newly developed cal culi of explicit substitutions (Abadi, Cardelli, Curien, Hardin, Levy, and Rios), which are similar in spirit to the categorical combinatory logic, but are closer to the syntax of A-calculus (Section 1.2). The study of the full abstraction problem for PCF and extensions of it has been enriched with a new full abstraction result: the model of sequential algorithms is fully abstract with respect to an extension of PCF with a control operator (Cartwright, Felleisen, Curien). An order extensional model of error-sensitive sequential algorithms is also fully abstract for a corresponding extension of PCF with a control operator and errors (Sections 2.6 and 4.1). I suggest that sequential algorithms lend themselves to a decomposition of the function spaces that leads to models of linear logic (Lamarche, Curien), and that connects sequentiality with games (Joyal, Blass, Abramsky) (Sections 2.1 and 2.6).