Soil Hydrology, Land Use and Agriculture


Book Description

Agriculture is strongly affected by changes in soil hydrology as well as changes in land use and management practices and the complex interactions between them. This book develops an understanding of these interactions on a watershed scale, using soil hydrology models and addresses the consequences of land use and management changes on agriculture from a research perspective. Case studies illustrate the impact of land use and management on various soil hydrological parameters under different climates and ecosystems.




Soil Mapping and Process Modeling for Sustainable Land Use Management


Book Description

Soil Mapping and Process Modeling for Sustainable Land Use Management is the first reference to address the use of soil mapping and modeling for sustainability from both a theoretical and practical perspective. The use of more powerful statistical techniques are increasing the accuracy of maps and reducing error estimation, and this text provides the information necessary to utilize the latest techniques, as well as their importance for land use planning. Providing practical examples to help illustrate the application of soil process modeling and maps, this reference is an essential tool for professionals and students in soil science and land management who want to bridge the gap between soil modeling and sustainable land use planning. - Offers both a theoretical and practical approach to soil mapping and its uses in land use management for sustainability - Synthesizes the most up-to-date research on soil mapping techniques and applications - Provides an interdisciplinary approach from experts worldwide working in soil mapping and land management




Land-Use Change Impacts on Soil Processes


Book Description

This book examines the effects that land-use changes (notably agricultural intensification, logging, soil erosion, urbanisation and mining) have on soil characteristics and processes in tropical and savannah environments. It covers a range of geographical regions and environments as impacts of land use change are often site specific. The effects of land use change on various aspects of the soil ecosystem from both a chemical and biological perspective will be examined.




Climate and Land Use Impacts on Natural and Artificial Systems


Book Description

Climate and Land Use Impacts on Natural and Artificial Systems: Mitigation and Adaptation provides in-depth information on the linkages between climate change and land use, how they are related, how land use is shifting over time, and the major global regions at risk for climate and land use changes. This comprehensive resource discusses climatic factors and processes that impact natural and artificial systems, as well as the relationship between climate change and both natural and man-made hazards. The book includes case studies and original maps to provide real-life examples of climate change and land use over regions around the globe. In addition, the book presents future perspectives on mitigation and adaptation of the climate change impact. - Summarizes current research on land use and climate change - Provides future perspectives on climate change using climate models - Includes case studies to provide real-life examples from various countries - Incorporates high level graphics, images, and maps to support reviews and case studies




The Impact of Microorganisms on Consumption of Atmospheric Trace Gases


Book Description

Gases with a mixing ratio of less than one percent in the lower atmosphere (i.e. the troposphere) are considered as trace gases. Numerous of these trace gases originate from biological processes in marine and terrestrial ecosystems. These gases are of relevance for the climate as they contribute to global warming or to the troposphere’s chemical reactive system that builds the ozone layer or they impact on the stability of aerosols, greenhouse, and pollutant gases. These reactive trace gases include methane, a multitude of volatile organic compounds of biogenic origin (bVOCs) and inorganic gases such as nitrogen oxides or ozone. The regulatory function of microorganisms for trace gas cycling has been intensively studied for the greenhouse gases nitrous oxide and methane, but is less well understood for microorganisms that metabolize molecular hydrogen, carbon monoxide, or bVOCs. The studies compiled this Research Topic reflect this very well. While a number of articles focus on nitrous oxide and methane or carbon monoxide oxidation, only a few articles address conversion processes of further bVOCs. The Research Topic is complemented by three review articles about the consumption of methane and monoterpenes, as well as the role of the phyllosphere as a particular habitat for trace gas-consuming microorganisms, and point out future research directions in the field. The presented scientific work illustrates that the field of microbial regulation of trace glas fluxes is still in its infancy when one broadens the view on gases beyond methane and nitrous oxide. However, there is a societal need to better predict global dynamics of trace gases that impact on the functionality and warming of the troposphere. Upcoming modelling approaches will need further information on process rates, features and distribution of the driving microorganisms to fullfill this demanding task.




National Land Use Policy


Book Description







General Information Series


Book Description