Large-Scale Simulation


Book Description

Large-Scale Simulation: Models, Algorithms, and Applications gives you firsthand insight on the latest advances in large-scale simulation techniques. Most of the research results are drawn from the authors’ papers in top-tier, peer-reviewed, scientific conference proceedings and journals. The first part of the book presents the fundamentals of large-scale simulation, including high-level architecture and runtime infrastructure. The second part covers middleware and software architecture for large-scale simulations, such as decoupled federate architecture, fault tolerant mechanisms, grid-enabled simulation, and federation communities. In the third part, the authors explore mechanisms—such as simulation cloning methods and algorithms—that support quick evaluation of alternative scenarios. The final part describes how distributed computing technologies and many-core architecture are used to study social phenomena. Reflecting the latest research in the field, this book guides you in using and further researching advanced models and algorithms for large-scale distributed simulation. These simulation tools will help you gain insight into large-scale systems across many disciplines.




Computational Electronics


Book Description

Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators.




Very Large Scale Computation in the 21st Century


Book Description

This text on very large scale computation in the 21st century covers such topics as: challenges in the natural sciences and physics; chemistry; fluid dynamics; astrophysics; biology; challenges in engineering; challenges in algorithm design; and challenges in system design.




Large Scale Computational Physics On Massively Parallel Computers


Book Description

Contents:A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes (P Mora & D Place)Vectorized and Parallelized Algorithms for Multi-Million Particle MD-Simulations (W Form et al)Green-Function Method for Electronic Structure of Periodic Crystals (R Zeller)Parallelization of the Ising Simulation (N Ito)A Nonlocal Approach to Vertex Models and Quantum Spin Systems (H G Evertz & M Marcu)The Static Quark-Antiquark-Potential: A ‘Classical’ Experiment on the Connection Machine CM-2 (K Schilling & G S Bali)Determination of Monopole Current Clusters in Four-Dimensional Quantum Electrodynamics (A Bode et al)QCD Calculations on the QCDPAX (K Kanaya)UKQCD — Recent Results and Future Prospects (R Kenway)Programming Tools for Parallel Computers (K J M Moriarity & T Trappenberg)Workstation Clusters: One Way to Parallel Computing (M Weber)APE100 and Beyond (R Tripiccione)and other papers Readership: Computational physicists. keywords:







Models of Computation


Book Description




Computational Neuroscience in Epilepsy


Book Description

Epilepsy is a neurological disorder that affects millions of patients worldwide and arises from the concurrent action of multiple pathophysiological processes. The power of mathematical analysis and computational modeling is increasingly utilized in basic and clinical epilepsy research to better understand the relative importance of the multi-faceted, seizure-related changes taking place in the brain during an epileptic seizure. This groundbreaking book is designed to synthesize the current ideas and future directions of the emerging discipline of computational epilepsy research. Chapters address relevant basic questions (e.g., neuronal gain control) as well as long-standing, critically important clinical challenges (e.g., seizure prediction). Computational Neuroscience in Epilepsy should be of high interest to a wide range of readers, including undergraduate and graduate students, postdoctoral fellows and faculty working in the fields of basic or clinical neuroscience, epilepsy research, computational modeling and bioengineering. - Covers a wide range of topics from molecular to seizure predictions and brain implants to control seizures - Contributors are top experts at the forefront of computational epilepsy research - Chapter contents are highly relevant to both basic and clinical epilepsy researchers




The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems


Book Description

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.




Cloud Computing Security


Book Description

This handbook offers a comprehensive overview of cloud computing security technology and implementation while exploring practical solutions to a wide range of cloud computing security issues. As more organizations use cloud computing and cloud providers for data operations, the need for proper security in these and other potentially vulnerable areas has become a global priority for organizations of all sizes. Research efforts from academia and industry, as conducted and reported by experts in all aspects of security related to cloud computing, are gathered within one reference guide. Features • Covers patching and configuration vulnerabilities of a cloud server • Evaluates methods for data encryption and long-term storage in a cloud server • Demonstrates how to verify identity using a certificate chain and how to detect inappropriate changes to data or system configurations John R. Vacca is an information technology consultant and internationally known author of more than 600 articles in the areas of advanced storage, computer security, and aerospace technology. John was also a configuration management specialist, computer specialist, and the computer security official (CSO) for NASA’s space station program (Freedom) and the International Space Station Program from 1988 until his retirement from NASA in 1995.




Health Technology Sourcebook, 2nd Ed.


Book Description

Consumer health information about the application of science to develop solutions to health problems or issues such as the prevention or delay of onset of diseases or the promotion and monitoring of good health. Includes index, glossary of related terms, and other resources.