Large-Scale Mammalian Cell Culture Technology


Book Description

An interdisciplinary approach, integrating biochemistry, biology, genetics, and engineering for the effective production of protein pharmaceuticals. The volume offers a biological perspective of large-scale animal cell culture and examines diverse processing strategies, process management, regulator




Large-Scale Mammalian Cell Culture


Book Description

Large-Scale Mammalian Cell Culture is composed of papers presented as part of a symposium sponsored by the American Chemical Society Division of Microbial and Biochemical Technology at the 188th American Chemical Society National Meeting, held at Philadelphia, Pa., on Aug. 27, 1984. A rapid development of large-scale mammalian cell culture technology for the production of biologically important molecules becomes apparent. This book looks into this technology, its potential for commercial application, and the regulatory concerns posed by its use for the production of human therapeutics.




Production of Biologicals from Animal Cells in Culture


Book Description

Production of Biologicals from Animal Cells in Culture reviews the state of the art in animal cell biotechnology, with emphasis on the sequence of events that occur when generating a biological from animal cells in culture. Methods that enable adjustment of nutrient feed streams into perfusion bioreactors so as to increase productivity are described. A number of issues are also addressed, such as the usefulness of the fingerprint method for cell characterization. Comprised of 135 chapters, this book begins with an overview of the problems and benefits of animal cell culture, followed by a discussion on the isolation of immortal murine macrophage cell lines. The reader is systematically introduced to the use of DNA fingerprinting to characterize cell banks; immortalization of cells with oncogenes; lipid metabolism of animal cells in culture; and energetics of glutaminolysis. Subsequent chapters explore serum-free and protein-free media; the physiology of animal cells; gene expression in animal cell systems; and animal cell bioreactors. The monitoring and assay of animal cell parameters are also considered, along with downstream processing and regulatory issues. This monograph will be of interest to students, practitioners, and investigators in the fields of microbiology and biotechnology.




Animal Cell Culture and Technology


Book Description

Animal cell culture is an important laboratory technique in the biological and medical sciences. It has become an essential tool for the study of most biochemical and physiological processes and the use of large-scale animal cell culture has become increasingly important to the commercial production of specific compounds for the pharmaceutical industry. This book describes the basic requirements for establishing and maintaining cell cultures both in the laboratory and in large-scale operations. Minimal background knowledge of the subject is assumed and therefore it will be a readable introduction to animal cell culture for undergraduates, graduates and experienced researchers. Reflecting the latest developments and trends in the field, the new topics include the latest theory of the biological clock of cell lines, the development of improved serum-free media formulations, the increased understanding of the importance and control of protein glycosylation, and the humanization of antibodies for therapeutic use.




Manual of Industrial Microbiology and Biotechnology


Book Description

The editors have enlisted a broad range of experts, including microbial ecologists, physiologists, geneticists, biochemists, molecular biologists, and biochemical engineers, who offer practical experience not found in texts and journals. This comprehensive perspective makes MIMB a valuable "how to" resource, the structure of which resembles the sequence of operation involved in the development of a commercial biological process and product.




Industrial Scale Suspension Culture of Living Cells


Book Description

The submersed cultivation of organisms in sterile containments or fermenters has become the standard manufacturing procedure, and will remain the gold standard for some time to come. This book thus addresses submersed cell culture and fermentation and its importance for the manufacturing industry. It goes beyond expression systems and integrally investigates all those factors relevant for manufacturing using suspension cultures. In so doing, the contributions cover all industrial cultivation methods in a comprehensive and comparative manner, with most of the authors coming from the industry itself. Depending on the maturity of the technology, the chapters address in turn the expression system, basic process design, key factors affecting process economics, plant and bioreactor design, and regulatory aspects.




Cell Culture Engineering


Book Description

Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.




Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts


Book Description

Written for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies




Cell and Tissue Reaction Engineering


Book Description

The completion of the Human Genome Project and the rapid progress in cell bi- ogy and biochemical engineering, are major forces driving the steady increase of approved biotech products, especially biopharmaceuticals, in the market. Today mammalian cell products (“products from cells”), primarily monoclonals, cytokines, recombinant glycoproteins, and, increasingly, vaccines, dominate the biopharmaceutical industry. Moreover, a small number of products consisting of in vitro cultivated cells (“cells as product”) for regenerative medicine have also been introduced in the market. Their efficient production requires comprehensive knowledge of biological as well as biochemical mammalian cell culture fundamentals (e.g., cell characteristics and metabolism, cell line establishment, culture medium optimization) and related engineering principles (e.g., bioreactor design, process scale-up and optimization). In addition, new developments focusing on cell line development, animal-free c- ture media, disposables and the implications of changing processes (multi-purpo- facilities) have to be taken into account. While a number of excellent books treating the basic methods and applications of mammalian cell culture technology have been published, only little attention has been afforded to their engineering aspects. The aim of this book is to make a contribution to closing this gap; it particularly focuses on the interactions between biological and biochemical and engineering principles in processes derived from cell cultures. It is not intended to give a c- prehensive overview of the literature. This has been done extensively elsewhere.




Animal Cell Culture Techniques


Book Description

Cell culture techniques allow a variety of molecular and cell biological questions to be addressed, offering physiological conditions whilst avoiding the use of laboratory animals. In addition to basic techniques, a wide range of specialised practical protocols covering the following areas are included: cell proliferation and death, in-vitro models for cell differentiation, in-vitro models for toxicology and pharmacology, industrial application of animal cell culture, genetic manipulation and analysis of human and animal cells in culture.