Large-Scale Distributed Computing and Applications: Models and Trends


Book Description

Many applications follow the distributed computing paradigm, in which parts of the application are executed on different network-interconnected computers. The extension of these applications in terms of number of users or size has led to an unprecedented increase in the scale of the infrastructure that supports them. Large-Scale Distributed Computing and Applications: Models and Trends offers a coherent and realistic image of today's research results in large scale distributed systems, explains state-of-the-art technological solutions for the main issues regarding large scale distributed systems, and presents the benefits of using large scale distributed systems and the development process of scientific and commercial distributed applications.




Large Scale Management of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 17th IFIP/IEEE International Workshop on Distributed Systems, Operations and Management, DSOM 2006, held in Dublin, Ireland in October 2006 in the course of the 2nd International Week on Management of Networks and Services, Manweek 2006. The 21 revised full papers and four revised short papers presented were carefully reviewed and selected from 85 submissions.







Understanding Distributed Systems, Second Edition


Book Description

Learning to build distributed systems is hard, especially if they are large scale. It's not that there is a lack of information out there. You can find academic papers, engineering blogs, and even books on the subject. The problem is that the available information is spread out all over the place, and if you were to put it on a spectrum from theory to practice, you would find a lot of material at the two ends but not much in the middle. That is why I decided to write a book that brings together the core theoretical and practical concepts of distributed systems so that you don't have to spend hours connecting the dots. This book will guide you through the fundamentals of large-scale distributed systems, with just enough details and external references to dive deeper. This is the guide I wished existed when I first started out, based on my experience building large distributed systems that scale to millions of requests per second and billions of devices. If you are a developer working on the backend of web or mobile applications (or would like to be!), this book is for you. When building distributed applications, you need to be familiar with the network stack, data consistency models, scalability and reliability patterns, observability best practices, and much more. Although you can build applications without knowing much of that, you will end up spending hours debugging and re-architecting them, learning hard lessons that you could have acquired in a much faster and less painful way. However, if you have several years of experience designing and building highly available and fault-tolerant applications that scale to millions of users, this book might not be for you. As an expert, you are likely looking for depth rather than breadth, and this book focuses more on the latter since it would be impossible to cover the field otherwise. The second edition is a complete rewrite of the previous edition. Every page of the first edition has been reviewed and where appropriate reworked, with new topics covered for the first time.




Guide to Reliable Distributed Systems


Book Description

This book describes the key concepts, principles and implementation options for creating high-assurance cloud computing solutions. The guide starts with a broad technical overview and basic introduction to cloud computing, looking at the overall architecture of the cloud, client systems, the modern Internet and cloud computing data centers. It then delves into the core challenges of showing how reliability and fault-tolerance can be abstracted, how the resulting questions can be solved, and how the solutions can be leveraged to create a wide range of practical cloud applications. The author’s style is practical, and the guide should be readily understandable without any special background. Concrete examples are often drawn from real-world settings to illustrate key insights. Appendices show how the most important reliability models can be formalized, describe the API of the Isis2 platform, and offer more than 80 problems at varying levels of difficulty.




Large-Scale Computing Techniques for Complex System Simulations


Book Description

Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and to provide a communications platform facilitating an exchange of concepts, ideas and needs between the scientists and technologist and complex system modelers. On the application side, the book focuses on modeling and simulation of natural and man-made complex systems. On the computing technology side, emphasis is placed on the distributed computing approaches, but supercomputing and other novel technologies are also considered.




Large Scale Management of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 17th IFIP/IEEE International Workshop on Distributed Systems, Operations and Management, DSOM 2006, held in Dublin, Ireland in October 2006 in the course of the 2nd International Week on Management of Networks and Services, Manweek 2006. The 21 revised full papers and four revised short papers presented were carefully reviewed and selected from 85 submissions.




Software Project Management for Distributed Computing


Book Description

This unique volume explores cutting-edge management approaches to developing complex software that is efficient, scalable, sustainable, and suitable for distributed environments. Practical insights are offered by an international selection of pre-eminent authorities, including case studies, best practices, and balanced corporate analyses. Emphasis is placed on the use of the latest software technologies and frameworks for life-cycle methods, including the design, implementation and testing stages of software development. Topics and features: · Reviews approaches for reusability, cost and time estimation, and for functional size measurement of distributed software applications · Discusses the core characteristics of a large-scale defense system, and the design of software project management (SPM) as a service · Introduces the 3PR framework, research on crowdsourcing software development, and an innovative approach to modeling large-scale multi-agent software systems · Examines a system architecture for ambient assisted living, and an approach to cloud migration and management assessment · Describes a software error proneness mechanism, a novel Scrum process for use in the defense domain, and an ontology annotation for SPM in distributed environments · Investigates the benefits of agile project management for higher education institutions, and SPM that combines software and data engineering This important text/reference is essential reading for project managers and software engineers involved in developing software for distributed computing environments. Students and researchers interested in SPM technologies and frameworks will also find the work to be an invaluable resource. Prof. Zaigham Mahmood is a Senior Technology Consultant at Debesis Education UK and an Associate Lecturer (Research) at the University of Derby, UK. He also holds positions as Foreign Professor at NUST and IIU in Islamabad, Pakistan, and Professor Extraordinaire at the North West University Potchefstroom, South Africa.




Large-scale Distributed Systems and Energy Efficiency


Book Description

Addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks With concerns about global energy consumption at an all-time high, improving computer networks energy efficiency is becoming an increasingly important topic. Large-Scale Distributed Systems and Energy Efficiency: A Holistic View addresses innovations in technology relating to the energy efficiency of a wide variety of contemporary computer systems and networks. After an introductory overview of the energy demands of current Information and Communications Technology (ICT), individual chapters offer in-depth analyses of such topics as cloud computing, green networking (both wired and wireless), mobile computing, power modeling, the rise of green data centers and high-performance computing, resource allocation, and energy efficiency in peer-to-peer (P2P) computing networks. Discusses measurement and modeling of the energy consumption method Includes methods for energy consumption reduction in diverse computing environments Features a variety of case studies and examples of energy reduction and assessment Timely and important, Large-Scale Distributed Systems and Energy Efficiency is an invaluable resource for ways of increasing the energy efficiency of computing systems and networks while simultaneously reducing the carbon footprint.




Advances in Distributed Systems


Book Description

In 1992 we initiated a research project on large scale distributed computing systems (LSDCS). It was a collaborative project involving research institutes and universities in Bologna, Grenoble, Lausanne, Lisbon, Rennes, Rocquencourt, Newcastle, and Twente. The World Wide Web had recently been developed at CERN, but its use was not yet as common place as it is today and graphical browsers had yet to be developed. It was clear to us (and to just about everyone else) that LSDCS comprising several thousands to millions of individual computer systems (nodes) would be coming into existence as a consequence both of technological advances and the demands placed by applications. We were excited about the problems of building large distributed systems, and felt that serious rethinking of many of the existing computational paradigms, algorithms, and structuring principles for distributed computing was called for. In our research proposal, we summarized the problem domain as follows: “We expect LSDCS to exhibit great diversity of node and communications capability. Nodes will range from (mobile) laptop computers, workstations to supercomputers. Whereas mobile computers may well have unreliable, low bandwidth communications to the rest of the system, other parts of the system may well possess high bandwidth communications capability. To appreciate the problems posed by the sheer scale of a system comprising thousands of nodes, we observe that such systems will be rarely functioning in their entirety.