Large Signal Model Development and High Efficiency Power Amplifier Design in Cmos Technology for Millimeter-wave Applications


Book Description

This dissertation presents a novel large signal modeling approach which can be used to accurately model CMOS transistors used in millimeter-wave CMOS power amplifiers. The large signal model presented in this work is classified as an empirical compact device model which incorporates temperature-dependency and device periphery scaling. These added features allow for efficient design of multi-stage CMOS power amplifiers by virtue of the process-scalability. Prior to the presentation of the details of the model development, background is given regarding the 90nm CMOS process, device test structures, de-embedding methods and device measurements, all of which are necessary preliminary steps for any device modeling methodology. Following discussion of model development, the design of multi-stage 60GHz Class AB CMOS power amplifiers using the developed model is shown, providing further model validation. The body of research concludes with an investigation into designing a CMOS power amplifier operating at frequencies close to the millimeter-wave range with a potentially higher-efficiency class of power amplifier operation. Specifically, a 24GHz 130nm CMOS Inverse Class F power amplifier is simulated using a modified version of the device model, fabricated and compared with simulations. This further demonstrates the robustness of this device modeling method.




CMOS 60-GHz and E-band Power Amplifiers and Transmitters


Book Description

This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.




Doherty Power Amplifiers


Book Description

Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods is a great resource for both RF and microwave engineers and graduate students who want to understand and implement the technology into future base station and mobile handset systems. The book introduces the very basic operational principles of the Doherty Amplifier and its non-ideal behaviors. The different transconductance requirements for carrier and peaking amplifiers, reactive element effect, and knee voltage effect are described. In addition, several methods to correct imperfections are introduced, such as uneven input drive, gate bias adaptation, dual input drive and the offset line technique. Advanced design methods of Doherty Amplifiers are also explained, including multistage/multiway Doherty power amplifiers which can enhance the efficiency of the amplification of a highly-modulated signal. Other covered topics include signal tracking operation which increases the dynamic range, highly efficient saturated amplifiers, and broadband amplifiers, amongst other comprehensive, related topics. - Specifically written on the Doherty Power Amplifier by the world's leading expert, providing an in-depth presentation of principles and design techniques - Includes detailed analysis on correcting non-ideal behaviors of Doherty Power Amplifiers - Presents advanced Doherty Power Amplifier architectures




RF and mm-Wave Power Generation in Silicon


Book Description

RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: - Power amplifier design fundamentals and methodologies - Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems - State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon - Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers - New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances - Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations - Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures - Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy - Contributions from the world-class experts from both academia and industry




High Efficiency Power Amplifier Design for 28 GHz 5G Transmitters


Book Description

This book introduces power amplifier design in 22nm FDSOI CMOS dedicated towards 5G applications at 28 GHz and presents 4 state-of-the-art power amplifier designs. The authors discuss power amplifier performance metrics, design trade-offs, and presents different power amplifier classes utilizing efficiency enhancement techniques at 28 GHz. The book presents the design process from theory, simulation, layout, and finally measurement results.




High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications


Book Description

This research focuses on the analysis and design of stacked-FET power amplifiers for millimeter-wave applications. We analyze the loss mechanisms in the stacked-FET PA circuit to develop the fundamental bounds on PAE and output power. Two-stack power amplifiers are designed and implemented at 45 and 90GHz achieving 19 and 15.8dbm output power with 34% and 11% PAE, respectively. The gate resistance of the stacked-FET PA is demonstrated to be a dominant source of loss at high frequency. To overcome this limitation, a multi-drive stacked-FET approach is proposed to improve the output power and efficiency. An analysis of conventional and multi-drive stacked-FET PAs demonstrates the performance improvement. A multi-drive three-stack PA is implemented in 45-nm SOI CMOS for 90GHz operation occupying 0.23 mm2. This PA achieves 19dBm saturated output power at a PAE of 14% and 12dB gain at 90 GHz using a 3.4-V power supply. To achieve high output power and high efficiency with high data rates using QAM modulation, this research proposes a new stacked-FET transmitter in 45-nm SOI CMOS at 45 GHz, which shares a common DC current through an I/Q digital-to-analog converter (DAC), I/Q mixer, and stacked-FET PA to provide high voltage swing without exceeding the breakdown voltage of the transistors in the stack. The circuit approach proposed here provides high RF output power at high efficiency along with a high-resolution DAC control to transmit complex modulation schemes. The use of high-resolution DACs enables the use of digital predistortion (DPD) to improve the error vector magnitude (EVM). The proposed architecture demonstrates 21.3 dBm saturated output power at a peak PAE of 16% into a 50 Ohms load impedance at 45 GHz, generating a 1.25-Gbps QPSK at an EVM of 5.5% using digital predistortion. Considering that modern communication systems employ modulation techniques that exhibit high peak-to-average power ratios (PAPRs), demand for amplifiers with high efficiency over a wide power range is increasing. The traditional Doherty power amplifier is one of the circuits that satisfy this demand by providing peak efficiency at 6-dB back off as well as peak power. In this work, the designed stacked-FET power amplifiers are utilized to make a Doherty power amplifier and a modified Doherty PA is proposed that addresses the limitations of the traditional design. The results demonstrate 4% improved back-off PAE as well as 1.5dB higher gain in comparison to the designed traditional Doherty PAs.




Millimeter-Wave Power Amplifiers


Book Description

This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.







mm-Wave Silicon Power Amplifiers and Transmitters


Book Description

Build high-performance, spectrally clean, energy-efficient mm-wave power amplifiers and transmitters with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems. Suitable for students, researchers and practicing engineers, this self-contained guide provides in-depth coverage of state-of-the-art semiconductor devices and technologies, linear and nonlinear power amplifier technologies, efficient power combining systems, circuit concepts, system architectures and system-on-a-chip realizations. The world's foremost experts from industry and academia cover all aspects of the design process, from device technologies to system architectures. Accompanied by numerous case studies highlighting practical design techniques, tradeoffs and pitfalls, this is a superb resource for those working with high-frequency systems.




CMOS Front Ends for Millimeter Wave Wireless Communication Systems


Book Description

This book focuses on the development of circuit and system design techniques for millimeter wave wireless communication systems above 90GHz and fabricated in nanometer scale CMOS technologies. The authors demonstrate a hands-on methodology that was applied to design six different chips, in order to overcome a variety of design challenges. Behavior of both actives and passives, and how to design them to achieve high performance is discussed in detail. This book serves as a valuable reference for millimeter wave designers, working at both the transistor level and system level.