Laser and Ion Beam Modification of Materials


Book Description

Laser and Ion Beam Modification of Materials is a compilation of materials from the proceedings of the symposium U: Material Synthesis and Modification by Ion beams and Laser Beams. This collection discusses the founding of the KANSAI Science City in Japan, and the structures, equipment, and research projects of two institutions are discussed pertaining to eV-MeV ion beams. A description of ion beams as used in materials research and in manufacturing processes, along with trends in ion implantation technology in semiconductors, is discussed. Research into ion beams by China and its industrial uses in non-semiconductor area is noted. For industrial applications, developing technology in terms of high speed, large surface modifications and use of high doses is important. Thus, the development of different ion beam approaches is examined. Industrial applications of ion and laser processing are discussed as cluster beams are used in solid state physics and chemistry. Mention is made on a high power discharge pumped solid state physics (ArF) excimer laser as a potential light source for better material processing. Under ion beam material processing is nanofabrication using focused ion beams, important for research work in mesoscopic systems. Progress in the use of ion-beam mixing using kinetic energy of ion-beams to mingle with pre-deposited surface layers of substrate materials has shown promise. Advanced materials researchers and scientists, as well as academicians in the field of nuclear physics, will find this collection helpful.




Ion Beam Modification of Materials


Book Description

This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in a range of host matrices, particularly for opto-electronics applications, was one especially new and exciting development. Despite several decades of study, major progress was reported at the conference in understanding defect evolution in semiconductors and the role of defects in transient impurity diffusion. The use of implantation to tune or isolate optical devices and in forming optically active centres and waveguides in semiconductors, polymers and oxide ceramics was a major focus of several presentations at the conference. The formation of hard coatings by ion assisted deposition or direct implantation was also an area which showed much recent progress. Ion beam techniques had also developed apace, particularly those based on plasma immersion ion implantation or alternative techniques for large area surface treatment. Finally, the use of ion beams for the direct treatment of cancerous tissue was a particularly novel and interesting application of ion beams.




Surface Modification and Alloying


Book Description

This book is an outcome of the NATO institute on surface modification which was held in Trevi, 1981. Surface modification and alloying by ion, electron or laser beams is proving to be one of the most burgeoning areas of materials science. The field covers such diverse areas as integrated circuit processing to fabricating wear and corrosion resistant surfaces on mechanical components. The common scientific questions of interest are the microstructures by the different energy deposition techniques. and associated physical properties produced The chapters constitute a critical review of the various subjects covered at Trevi. Each chapter author took responsibility for the overall review and used contributions from the many papers presented at the meeting; each participant gave a presentation. The contributors are listed at the start of each chapter. We took this approach to get some order in a large and diverse field. We are indebted to all the contributors, in particular the chapter authors for working the many papers into coherent packages; to Jim Mayer for hosting a workshop of chapter authors at Cornell and to Ian Bubb who did a sterling job in working over some of the manuscripts. Our special thanks are due to the text processing center at Bell Labs who took on the task of assembling the book. In particular Karen Lieb and Beverly Heravi typed the whole manuscript and had the entire book phototypeset using the Bell Laboratories UNIXTM system.




Materials Surface Processing by Directed Energy Techniques


Book Description

The current status of the science and technology related to coatings, thin films and surface modifications produced by directed energy techniques is assessed in Materials Surface Processing by Directed Energy Techniques. The subject matter is divided into 20 chapters - each presented at a tutorial level – rich with fundamental science and experimental results. New trends and new results are also evoked to give an overview of future developments and applications. - Provides a broad overview on modern coating and thin film deposition techniques, and their applications - Presents and discusses various problems of physics and chemistry involved in the production, characterization and applications of coatings and thin films - Each chapter includes experimental results illustrating various models, mechanisms or theories




Surface Modeling Engineering


Book Description

These volumes present the general parctitioners in engineering with a comprehensive discussion of technological surfaces, their interactions with environments, and the various modification techniques available to improve their performance. In each subject, applications to metals, ceramics, and polymers are emphasized. The interactions with the environment are described: corrosion (chemical), friction and waer (mechanical), and bioreactivity (physiological). Reviews of major modification schemes such as chemical vapor deposition, physical vapor deposition, laser beam interactions, chemical infusion, and ion implantation are presented. In summary, reviews of applications of the modification techniques to optimize the performances of structural components, tools, electronic devices, and implantable medical devices, manufactured out of metals, ceramic, and polymers, are described.




Ion Beam Modification of Solids


Book Description

This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.




Physics Briefs


Book Description




Condensed Matter


Book Description

Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media. The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectroscopy are discussed in detail. The final two chapters in the text cover two areas of ion beam materials modification: ion implantation in semiconductors and microfabrication. This text is a good reference material for physics graduate students, experimental and theoretical physicists, and chemists.




Surface Engineering


Book Description

Over the last few years there has been increasing need for systematic and straregically designed experiments of surface morphology evolution resulting form ion bombardment induced sputtering. Although there is an impressive number of investi gations {1} concerned with semiconductor materials as a result of immediate applications, the most systematic investigations have been conducted with fcc metals with particular interest on single crystal Cu {2,3}. Evidence now exists that within certain para meters (i. e ion species (Ar+), ion energy (20-44 KeV), substrate 2 temperature (80-550° K), dose rate (100-500 gA cm- ) , residual x 5 9 pressure (5 10- to 5x10- mm Hg) and polar and azimuthal angle of ion incidence {4} reproducible surface morphology (etch pits and pyramids) is achieved on the (11 3 1) specific crystallographic orientation. The temporal development of individual surface features was alsoobserved in this laterstudy {4}, by employing an in situ ion source in the scanning electron microscope at Salford, a technique also empolyed in studies of the influence of polar angle of ion incidence {5} and surface contaminants {6} on the topographyof Ar+ bombarded Si. Studies have also been made on the variation of incident ion species with the (11 3 1) Cu surface and it was fully recognized {7} that residual surface contaminants when present could playa major role in dictating the morhological evolution.