Laser Beam Propagation Through Random Media


Book Description

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.




Laser Beam Propagation in Random Media


Book Description

"This research monograph is a companion edition and update to the book: (AP) L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, WA, 2005). We present several new and advanced topics that have emerged during the years since (AP) was published. Much of the new material is compared throughout the text with experimental and computer simulation data. This comparison includes beam wander and its effect on a propagating laser beam, including beam-wander-induced scintillation. Other additions include an assessment of conventional probability density function (PDF) models for the irradiance after passing through a finite receiver aperture. New mathematical models for enhanced backscatter are introduced here, including extension to strong fluctuation regimes and semi-rough targets. In recent years, scientists have found experimental evidence that non-Kolmogorov and anisotropic conditions may occur even along horizontal propagation paths near the ground. We include a chapter on these important topics that presents a detailed treatment involving both non-Kolmogorov and anisotropic models. The book ends with a chapter devoted to the discussion of commonly-used instruments for measuring atmospheric parameters like the refractive-index structure parameter, inner scale, temperature, wind speed, heat flux, and so forth"--







Laser Beam Propagation in Nonlinear Optical Media


Book Description

"This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then this book will be a welcome addition to their bookshelf." —Richard Sutherland, Mount Vernon Nazarene University, Ohio, USA Laser Beam Propagation in Nonlinear Optical Media provides a collection of expressions, equations, formulas, and derivations used in calculating laser beam propagation through linear and nonlinear media which are useful for predicting experimental results. The authors address light propagation in anisotropic media, oscillation directions of the electric field and displacement vectors, the walk-off angles between the Poynting and propagation vectors, and effective values of the d coefficient for biaxial, uniaxial, and isotropic crystals. They delve into solutions of the coupled three wave mixing equations for various nonlinear optical processes, including quasi-phase matching and optical parametric oscillation, and discuss focusing effects and numerical techniques used for beam propagation analysis in nonlinear media, and phase retrieval technique. The book also includes examples of MATLAB and FORTRAN computer programs for numerical evaluations. An ideal resource for students taking graduate level courses in nonlinear optics, Laser Beam Propagation in Nonlinear Optical Media can also be used as a reference for practicing professionals.




Laser Beam Scintillation with Applications


Book Description

Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.




Field Guide to Atmospheric Optics


Book Description

The material in this Field Guide is a condensed version of similar material found in two textbooks: Laser Beam Propagation through Random Media (SPIE Vol. PM53) and Laser Beam Scintillation with Applications (SPIE Vol. PM99). Topics chosen for this concise presentation include a review of classical Kolmogorov turbulence theory, Gaussian-beam waves in free space, and atmospheric effects on a propagating optical wave. These atmospheric effects have great importance in a variety of applications like imaging, free space optical communications, laser radar, and remote sensing. This Guide presents tractable mathematical models from which the practitioner can readily determine beam spreading, beam wander, spatial coherence radius (Fried's parameter), angle of arrival fluctuations, scintillation, aperture averaging effects, fade probabilities, bit error-rates, and enhanced backscatter effects, among others.










Optical Beam Propagation in Turbulent Media


Book Description

The most recent developments on the propagation of microwave and optical beams in turbulent media, such as the clear atmosphere are discussed. Among the phenomena considered are beam spreading, beam wander, loss of coherence, scintillations, angle-of-arrival variations, and short pulse effects. Also included is a discussion of methods of compensation of the effect of turbulence on communications and imaging systems.