Laser Diagnostic Development and Measurement and Modeling of Turbulent Flowfields of Jets and Wakes


Book Description

The design and performance of a photon counting, two-channel spectroscopic system using the 6-W, 448-nm line of a cw argon ion laser is described. The two channels are formed by use of cylindrical optics and special slit mirrors set up following the exit slit of a conventional double spectrometer. The system is capable of dynamic, simultaneous measurements of either the concentrations of two gas species in cold flow or the temperature and concentration of a single gas species, such as N2, in a flame. Measurements are accomplished by recording the intensities of two spontaneous rotational Raman lines with spectral bandwidths between 0.04 and 0.08 nm. Up to 4096 samples (or reads from each of the two channels) can be recorded by a dedicated minicomputer at rates up to 10 kHz. Studies of a CH4 diffusion flame at sampling rates of 20 to 100 Hz and a room-temperature, axisymmetric C02 jet at rates up to 2.0 kHz were carried out. Analysis of the data from these studies include mean and rms profiles, probability density functions (pdf's), power spectral density functions, autocorrelation functions, cross correlation functions, and determinations of skewness and kurtosis in the pdf's and the C02 fluctuations.




Laser Diagnostic Development and Measurement and Modeling of Turbulent Flowfields of Jets and Wakes. Part 3. The Development of a Two-Channel CW Time-Resolved Laser Raman Spectroscopy (TiLaRS) System for Measurements in Gas Flowfields


Book Description

The design and performance of a photon counting, two-channel spectroscopic system using the 6-W, 448-nm line of a cw argon ion laser is described. The two channels are formed by use of cylindrical optics and special slit mirrors set up following the exit slit of a conventional double spectrometer. The system is capable of dynamic, simultaneous measurements of either the concentrations of two gas species in cold flow or the temperature and concentration of a single gas species, such as N2, in a flame. Measurements are accomplished by recording the intensities of two spontaneous rotational Raman lines with spectral bandwidths between 0.04 and 0.08 nm. Up to 4096 samples (or reads from each of the two channels) can be recorded by a dedicated minicomputer at rates up to 10 kHz. Studies of a CH4 diffusion flame at sampling rates of 20 to 100 Hz and a room-temperature, axisymmetric C02 jet at rates up to 2.0 kHz were carried out. Analysis of the data from these studies include mean and rms profiles, probability density functions (pdf's), power spectral density functions, autocorrelation functions, cross correlation functions, and determinations of skewness and kurtosis in the pdf's and the C02 fluctuations.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.



















Laser Diagnostic Development and Measurement and Modeling of Turbulent Flowfields of Jets and Wakes


Book Description

Finite-difference numerical computations are presented to predict the isothermal, turbulent, recirculating flowfields in a centerbody combustor configuration which involves confined dual coaxial jet mixing in the near-wake region of an axisymmetric bluff body. Calculations based upon the Reynolds-averaged Navier-Stokes equations and the k-epsilon turbulence model consider the influence of the annular and central flow rates on the nature of the flowfield downstream of the bluff body. The reported isothermal modeling calculations are performed with the 'Teaching Elliptic Axisymmetrical Characteristics Heuristically' (TEACH) Code. Numerical results show the influence of the annular and central jet flow rates on the distributions of the mean and rms velocity fields and centerline locations of stagnation points. The sensitivity of the predicted results to several aspects of the modeling is considered. The predicted results demonstrate the complexity of flowfield interactions in the near-wake region and refine the understanding of the centerbody combustor flowfields. The character of the recirculating flowfield emerging from the numerical predictions when the near-wake is dominated by the annular jet is in conformity with experimental observations.




Advanced Laser Diagnostics Development for the Characterization of Gaseous High Speed Flows


Book Description

The study of high-speed flows represents a challenging problem in the fluid dynamics field due to the presence of chemical reactions and non-equilibrium effects. Hypersonic flights, where speeds reach Mach 5 and above, are particularly influenced by these effects, resulting in a direct impact on the flow and consequently on the aerodynamic performance of a vehicle traveling at these speeds. The study of hypersonic flow conditions requires the experimental capability of determining local temperatures, pressures and velocities using non-intrusive techniques. Furthermore, the simultaneous measurement of two or more variables in a complex flow boosts the amount of information that is obtained since valuable correlations can be established. This research includes the design, construction and characterization of a hypersonic flow apparatus explicitly intended as a tool for advanced laser diagnostics development. This apparatus is characterized by its pulsed operation mode that translates into a significant reduction in mass flow rates and can be operated for long periods at Mach numbers ranging from 2.8 to 6.2. The flow conditions during the uniform flow time interval of each pulse vary by less than 1%, generating a flow of sufficient quality for quantitative measurements. The development of a laser diagnostic technique, the VENOM technique, which is a non-intrusive method to provide simultaneous 2-D measurements of the mean and instantaneous fluctuations in two-component velocity and temperature is also presented. This technique represents the first single diagnostic capable of instantaneous two-component velocimetry and thermometry in a gaseous flow field by combining two Nitric Oxide Planar Laser Induced Fluorescence methods: two-component Molecular Tagging Velocimetry and two-line thermometry, employing the nascent NO(v"=1) arising from the NO2 photodissociation as a molecular tracer. The VENOM technique is expected to be not only applicable to cold high-speed flows, which is the focus of the present work, but also to combustion and other reactive or high-enthalpy flow fields.