Laser Ignition of Internal Combustion Engines


Book Description

Doctoral Thesis / Dissertation from the year 2006 in the subject Electrotechnology, grade: 1, mit Ausgezeichnung bestanden, Vienna University of Technology (Insitut für Photonik), language: English, abstract: In this PhD thesis different fundamental aspects and the practical usability of a laser ignition system as a new, innovative and alternative ignition approach for internal combustion engines were investigated in great detail mainly experimentally. Ignition experiments in combustion chambers under high pressures and elevated temperatures have been conducted. Different fuels were investigated. Also the minimum breakdown energy in dependence of the initial temperature and pressure with the help of an aspheric lens with a high numerical aperture was studied. High-speed Schlieren diagnostics have been conducted in the combustion chamber. The different stages like the ignition plasma within the first nanoseconds via the shock wave generation to the expanding flame kernel were investigated. With the help of multi-point ignition the combustion duration could be reduced significantly. The controlled start of auto-ignition of n-heptane-air mixtures by resonant absorption of Er, Cr: YSGG laser radiation at 2.78 μm by additionally introduced water has been proven in combustion chamber experiments as a completely new idea. Beside experiments in the combustion chambers and long term tests under atmospheric conditions, various tests in SI engines up to 200 h, have been made. Different sources of contamination of the window surface have been identified. First experiments with a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser α-prototype system with maximum pulse energy of 1.5 mJ at about 1.5 ns pulse duration were performed which allowed to ignite the engine successfully over a test period of 100 h. In cooperation with Lund University in Sweden, experiments have been performed on another engine test bed running in HCCI mode revealing the las










Simulations and Optical Diagnostics for Internal Combustion Engines


Book Description

This book focuses on combustion simulations and optical diagnostics techniques, which are currently used in internal combustion engines. The book covers a variety of simulation techniques, including in-cylinder combustion, numerical investigations of fuel spray, and effects of different fuels and engine technologies. The book includes chapters focused on alternative fuels such as DEE, biomass, alcohols, etc. It provides valuable information about alternative fuel utilization in IC engines. Use of combustion simulations and optical techniques in advanced techniques such as microwave-assisted plasma ignition, laser ignition, etc. are few other important aspects of this book. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.




Laser Ignition For Combustion Engines


Book Description

With the advent of lasers in the 1960s, researcher and engineers discovered a new and powerful tool to investigate natural phenomena and improve technologically critical processes. Nowadays, applications of different lasers span quite broadly from diagnostics tools in science and engineering to biological and medical uses. In this article basic principles and applications of lasers for ignition of fuels are concisely reviewed from the engineering perspective. The objective is to present the current state of the relevant knowledge on fuel ignition and discuss select applications, advantages and disadvantages, in the context of combustion engines. Fundamentally, there are four different ways in which laser light can interact with a combustible mixture to initiate an ignition event. They are referred to as thermal initiation, nonresonant breakdown, resonant breakdown, and photochemical ignition. By far the most commonly used technique is the nonresonant initiation of combustion primarily because of its freedom in selecting the laser wavelength and ease of implementation. Recent progress in the area of high power fiber optics allowed convenient shielding and transmission of the laser light to the combustion chamber. However, issues related to immediate interfacing between the light and the chamber such as selection of appropriate window material and its possible fouling during the operation, shaping of the laser focus volume, and selection of spatially optimum ignition point remain amongst the important engineering design challenges. One of the potential advantages of the lasers lies in its flexibility to change the ignition location. Also, multiple ignition points can be achieved rather comfortably as compared to conventional electric ignition systems using spark plugs.




Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines


Book Description

The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements. Based on the author’s previous SAE book, Engine Combustion Instrumentation and Diagnostics, this book focuses on laser-based optical techniques for combustion flows and in-cylinder measurements. Included are new chapters on optical engines and optical equipment, case studies, and an updated description of each technique. The purpose of this book is to provide, in one publication, an introduction to experimental techniques that are best suited for in-cylinder engine combustion measurements. It provides sufficient details for readers to set up and apply these techniques to IC engines and combustion flows.




Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction


Book Description

This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.