Laser Plasmas and Nuclear Energy


Book Description

Most of this book was written before October 1973. Thus the statements concerning the energy crisis are now dated, but remain valid nevertheless. However, the term "energy crisis" is no longer the unusual new concept it was when the material was written; it is, rather, a commonplace expression for a condition with which we are all only too familiar. The purpose of this book is to point out that the science and technology of laser-induced nuclear fusion are an extraordinary subject, which in some way not yet completely clear can solve the problem of gaining a pollution-free and really inexhaustible supply of inexpensive energy from the heavy hydrogen (deuterium) atoms found in all terrestrial waters. The concept is very obvious and very simple: To heat solid deuterium or mixtures of deuterium and tritium (superheavy hydrogen) by laser pulses so rapidly that despite the resulting expansion and cooling there still take place so many nuclear fusion reactions tnat the energy produced is greater than the laser energy that had to be applied. Compression of the plasma by the laser radiation itself is a more sophisticated refinement of the process, but one which at the present stage of laser cechnology is needed for the rapid realization of a laser-fusion reactor for power generation. This concept of compression can also be applied to the development of completely safe reactors with controlled microexplosions of laser-compressed fissionable materials such as uranium and even boron, which fission completely safely into nonradioactive helium atoms.




Plasmas at High Temperature and Density


Book Description

"New physics" is an appealing new keyword, not yet devalued by the ravages of inflation. But what has this to do with such an ugly field as plasma physics, steeped in classical physics, mostly outworn, with all its unsolved and ambiguous technological problems and its messy and open ended numerical studies? "New physics" is concerned with quarks, Higgs particles, grand unified theory, super strings, gravitational waves, and the profound basics of cosmology and black holes. It is the field of astonishing quantum effects, demonstrated by the von Klitzing effect and high temperature superconductors. But what can plasma physicists offer, after so many years of expensive and frustrating research to solve the problem of fusion energy? One may suggest that the fascinating research ofchaos with applications to plasma, or the achievements of statistical mechanics applied to plasmas, has something to offer and should be the subject of attention. However, this is not the aim of this book. Complementing the traditional aim of physics, which is to interpret the phenomena of nature by generalizing laws such that exact predictions about new properties and effects can be drawn, this book demonstrates how new physics has been derived over the last 30 years from the state of matter which exists at high temperatures (plasma).




Laser Interaction and Related Plasma Phenomena


Book Description

Since the third Workshop on "Laser Interaction and Related Plasma Phenomena" in 1973, one area within the scope of this con ference received increased attention: laser fusion. This possi bility was emphasized in February 1977 in a Seminar on US energy policies at The Hartford Graduate Center by John F. O'Leary, Head of the Federal Energy Administration, who said that "by the year 2100, ••• laser fusion will be coming along, giving us a new age of choice". Efforts in research and development were stepped up to investigate new concepts of laser ignition of controlled nuclear reactions. Here, one expects no radioactive waste from fuel. The deuterium-tritium reaction - the only one which may be possible with magnetic field confinement in tokamaks - has a highly radio active tritium ~ycle, while, in principle, laser reactions are possible with pure deuterium, hydrogen-boron or others. The worldwide progress in laser compression was not only stim ulated by the energy crisis, but also by its advancements. In our first Workshop in 1969 F. F10ux of the French Limei1 Laboratories described his experiments, which led, only one month later, to the production of fusion neutrons in such large numbers as had not been achieved up to then (see appendix of Vol. I these Proceedings).




Frontiers in High Energy Density Physics


Book Description

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.




Laser Interaction and Related Plasma Phenomena


Book Description

As was the case in the two preceding workshops of 1969 and 1971, the Third Workshop on "Laser Interaction and Related Plasma Phenomena" held in 1973 was of international character. The main purpose was to review the advanced status of this particular and turbulent field of physics as it had developed vigorously in all major laboratories of the world since 1971. Due to recently accelerated advancements, it was hardly possible to present a com plete tutorial review; the subject is still in its premature stages and changing rapidly. A topical conference would have been too specific for a group of physicists with broad backgrounds working in the field or for those just about to enter it. It was the aim of the workshop and it is the aim of these proceedings to help this large group of scientists find their way within the highly complex and sometimes confusing results of a new field. We optimized the task of the workshop with extensive reviews on several topics and at the same time included more detailed infor mation for specialists. The differences in their conclusions were not a matter of contention but rather served to complement the advanced results. As in the preceding workshops, we directed our attention toward critical realism in respect to the complexity of the field. What is meant here is exemplified in the contribution by R. Sigel ~.667).




The Interaction of High-Power Lasers with Plasmas


Book Description

The Interaction of High-Power Lasers with Plasmas provides a thorough self-contained discussion of the physical processes occurring in laser-plasma interactions, including a detailed review of the relevant plasma and laser physics. The book analyzes laser absorption and propagation, electron transport, and the relevant plasma waves in detail. It al




Applications of Laser-Plasma Interactions


Book Description

Recent advances in the development of lasers with more energy, power, and brightness have opened up new possibilities for exciting applications. Applications of Laser-Plasma Interactions reviews the current status of high power laser applications. The book first explores the science and technology behind the ignition and burn of imploded fusion fue







Introduction to Laser-Plasma Interactions


Book Description

This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas. The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion research. These new developments make LPI more relevant than ever, and the resulting influx of new scientists necessitates new pedagogical material on the subject. In contrast to the classical textbooks on LPI, this book provides a complete description of all wave-coupling instabilities in unmagnetized plasmas in the kinetic as well as fluid pictures, and includes a comprehensive description of the optical smoothing techniques used on high-power lasers and their impact on laser-plasma instabilities. It summarizes all the key developments from the 1970s to the present day in view of the current state of LPI and ICF research; it provides a derivation of the key LPI metrics and formulas from first principles, and connects the theory to experimental observables. With exercises and plenty of illustrations, this book is ideal as a textbook for a course on laser-plasma interactions or as a supplementary text for graduate introductory plasma physics course. Students and researchers will also find it to be an invaluable reference and self-study resource.




Plasma and Fusion Science


Book Description

In this new book, an interdisciplinary and international team of experts provides an exploration of the emerging plasma science that is poised to make the plasma technology a reality in the manufacturing sector. The research presented here will stimulate new ideas, methods, and applications in the field of plasma science and nanotechnology. Plasma technology applications are being developed that could impact the global market for power, electronics, mineral, and other fuel commodities. Currently, plasma science is described as a revolutionary discipline in terms of its possible impact on industrial applications. It offers potential solutions to many problems using emerging techniques. In this book the authors provide a broad overview of recent trends in field plasma science and nanotechnology. Divided into several parts, Plasma and Fusion Science: From Fundamental Research to Technological Applications explores some basic plasma applications and research, space and atmospheric plasma, nuclear fusion, and laser plasma and industrial applications of plasma. A wide variety of cutting-edge topics are covered, including: • basic plasma physics • computer modeling for plasma • exotic plasma (including dusty plasma) • industrial plasma applications • laser plasma • nuclear fusion technology • plasma diagnostics • plasma processing • pulsed power • space astrophysical plasma • plasma and nanotechnology Pointing to current and possible future developments in plasma science and technology, the diverse research presented here will be valuable for researchers, scientists, industry professionals, and others involved in the revolutionary field of plasma and fusion science.