Laser Spectroscopy And Photochemistry On Metal Surfaces (In 2 Parts) - Part 2


Book Description

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.




Laser Spectroscopy And Photochemistry On Metal Surfaces (In 2 Parts) - Part 1


Book Description

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.




Laser Spectroscopy and Photochemistry on Metal Surfaces


Book Description

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.




Modern Electronic Structure Theory (In 2 Parts) - Part 2


Book Description

Modern Electronic Structure Theory provides a didactically oriented description of the latest computational techniques in electronic structure theory and their impact in several areas of chemistry. The book is aimed at first year graduate students or college seniors considering graduate study in computational chemistry, or researchers who wish to acquire a wider knowledge of this field.




Surface Science


Book Description

An updated fourth edition of the text that provides an understanding of chemical transformations and the formation of structures at surfaces The revised and enhanced fourth edition of Surface Science covers all the essential techniques and phenomena that are relevant to the field. The text elucidates the structural, dynamical, thermodynamic and kinetic principles concentrating on gas/solid and liquid/solid interfaces. These principles allow for an understanding of how and why chemical transformations occur at surfaces. The author (a noted expert on in the field) combines the required chemistry, physics and mathematics to create a text that is accessible and comprehensive. The fourth edition incorporates new end-of-chapter exercises, the solutions to which are available on-line to demonstrate how problem solving that is relevant to surface science should be performed. Each chapter begins with simple principles and builds to more advanced ones. The advanced topics provide material beyond the introductory level and highlight some frontier areas of study. This updated new edition: Contains an expanded treatment of STM and AFM as well as super-resolution microscopy Reviews advances in the theoretical basis of catalysis and the use of activity descriptors for rational catalyst design Extends the discussion of two-dimensional solids to reflect remarkable advances in their growth and characterization Delves deeper into the surface science of electrochemistry and charge transfer reactions Updates the “Frontiers and Challenges” sections at the end of each chapter as well as the list of references Written for students, researchers and professionals, the fourth edition of Surface Science offers a revitalized text that contains the tools and a set of principles for understanding the field. Instructor support material, solutions and PPTs of figures, are available at http://booksupport.wiley.com




Interfaces Under Laser Irradiation


Book Description

Known and developed over the past twenty five years, lasers have been experimented in a variety of processes with an uneven success. Apart from fundamental physics experiments in which the various aspects of coherence are systematically exploited, applications in the field of Materials Science have been scattered recently over so many situations that it is apparently difficult today to conceive a comprehensive interpretation of all physical processes encountered. In some domains of research like photochemistry, development has been fast and rather self-supporting. In others, like solid-state processing, progress has been either very specific or deviated towards marginal applications, or else emerged as a joint-venture between physicists and chemists. This yielded a number of professional meetings, where day-to-day research activities are presented. In 1982, the Cargese ASI on "Cohesive properties of semiconductors under laser irradiation" was one of such meetings at which a prospective of the field was discussed at length in ebullient round-table sessions. Quoted from the proceedings, "the Institute helped to discern clearly the limits of existing theoretical approaches and the directions along which work is urgently needed within the next few years". Four years have passed and the field has literally explo ded. It must be mentioned that some of the most striking developments over the past two years were accurately predicted at the Institute in Cargese.




Frontiers in Surface Science and Interface Science


Book Description

Any notion that surface science is all about semiconductors and coatings is laid to rest by this encyclopedic publication: Bioengineered interfaces in medicine, interstellar dust, DNA computation, conducting polymers, the surfaces of atomic nuclei - all are brought up to date. Frontiers in Surface and Interface Science - a milestone publication deserving a wide readership. It combines a sweeping expert survey of research today with an educated look into the future. It is a future that embraces surface phenomena on scales from the subatomic to the galactic, as well as traditional topics like semiconductor design, catalysis, and surface processing, modeling and characterization. And, great efforts have been made to express sophisticated ideas in an attractive and accessible way. Nanotechnology, surfaces for DNA computation, polymer-based electronics, soft surfaces, interstellar surface chemistry - all feature in this comprehensive collection.