Laser Surface Treatments for Tribological Applications


Book Description

This reference presents comprehensive information about laser surface treatments for tribological applications. Chapters of the book highlight the importance of laser technology in modifying materials to optimize the effects of friction and lubrication, by explaining a range of surface modification methods used in industries. These methods include hardening, melting, alloying, cladding and texturing. The knowledge in the book is intended to give an in-depth understanding about the role of laser technology in tribology and the manufacture of industrial materials and surfaces for special applications. Key Features: - 10 chapters on topics relevant to tribology and industrial applications of laser material processing - Comprehensively covers laser surface modification of metals and alloys - Explains a wide range of surface modification methods (hardening, melting, alloying, cladding and texturing) - Covers material and tribological characterization of surfaces - Presents information in a simple structured layout for easy reading, with introductory notes for learners - Provides references for further reading This book is an ideal reference for students and learners in courses related to engineering, manufacturing and materials science. Researchers, industrial professionals and general readers interested in laser assisted machining processes and surface modification techniques will also find the book to be an informative reference on the subject.




Laser Surface Treatments for Tribological Applications


Book Description

This reference presents comprehensive information about laser surface treatments for tribological applications. Chapters of the book highlight the importance of laser technology in modifying materials to optimize the effects of friction and lubrication, by explaining a range of surface modification methods used in industries. These methods include hardening, melting, alloying, cladding and texturing. The knowledge in the book is intended to give an in-depth understanding about the role of laser technology in tribology and the manufacture of industrial materials and surfaces for special applications. Key Features: - 10 chapters on topics relevant to tribology and industrial applications of laser material processing - Comprehensively covers laser surface modification of metals and alloys - Explains a wide range of surface modification methods (hardening, melting, alloying, cladding and texturing) - Covers material and tribological characterization of surfaces - Presents information in a simple structured layout for easy reading, with introductory notes for learners - Provides references for further reading This book is an ideal reference for students and learners in courses related to engineering, manufacturing and materials science. Researchers, industrial professionals and general readers interested in laser assisted machining processes and surface modification techniques will also find the book to be an informative reference on the subject. Audience: Students, researchers, professionals and general readers interested in industrial processes for laser modification of surface and tribology




Laser-Induced Periodic Surface Nano- and Microstructures for Tribological Applications


Book Description

This book is the printed edition of the Special Issue published in Materials. The book provides an overview of current international research activities in the field of friction and wear management through the laser processing of periodic surface micro- and nanostructures for technical and medical applications. Contributions of renowned scientists from academia and industry provide a bridge between the fields of tribology and laser material processing in order to foster current knowledge and present new ideas for future applications and new technologies.




Excimer Laser Surface Processing for Tribological Applications in Metals and Ceramics


Book Description

The use of pulsed excimer lasers, operating at UV wavelengths, for surface modification has many potential applications in the tribology of metals and ceramics. Alterations of surface chemistry and microstructure are possible on standard engineering materials. We have demonstrated improved tribological performance in stainless steel by the formation of a unique oxide and by Ti mixing and in SiC by Ti mixing. Specifically, we have observed reduced friction in dry sliding conditions and a change in the wear process resulting in greatly reduced surface damage. We have also demonstrated the effectiveness of excimer laser mixing in other systems with potential tribological applications. 22 refs., 7 figs.




Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications--Part 1


Book Description

This paper reviews the commonly used coating materials and surface treatments for tribological applications. The coating materials considered are plastics, such as polytetrafluoroethylene, polyamide-imide, polyphenylene sulfide, and polyimide; molybdenum disulfide; graphite; cadmium oxide-graphite-silver; calcium fluoride-silver-glass-nickel-chrome; hard chrome; electroless nickel; silver; and some selected carbides, nitrides, borides, and oxides. Surface treatments considered are carburizing, nitriding, carbonitriding, boriding, induction hardening, flame hardening, and laser hardening. Some examples of industrial applications are presented.




Laser Surface Engineering


Book Description

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering




Laser Applications in Surface Modification


Book Description

This book introduces the applications of laser in surface modification, such as laser cladding of Stellite alloys and metal-ceramic composites. Besides, nanomaterials including carbon nanotubes and Al2O3 nanoparticles are brought into the laser processing, to form high-temperature resistance, chemical stability, and wear- and oxidation-resistant composite coatings. The readers will get more knowledge about the basic principle and application of laser cladding and laser surface hardening technologies, and gain a deep insight into the process and characteristics of the nanomaterial-assisted laser surface enhancement. It provides references for the researchers, engineers, and students in the fields of mechanical engineering, laser processing, and material engineering.




Advanced Laser Process for Surface Enhancement


Book Description

Two typical hybrid laser surface modification processes, i.e. electro/magnetic field aided laser process and supersonic laser deposition technology, are introduced in the book, to solve the common problems in quality control and low efficiency of the laser-only surface modification technology, high contamination and high consumption of the traditional surface modification technology. This book focuses on the principle, characteristics, special equipment, process and industrial applications of the hybrid laser surface modification processes based on the recent research results of the author’s group, and provides theoretical guidance and engineering reference for the researchers and engineers engaging in the field of surface engineering and manufacturing.




Laser Surface Engineering for Tribology


Book Description

Tribology grapples with diverse challenges, seeking to minimize friction and wear, and to advance the energy efficiency and sustainability of machinery. Laser surface engineering emerges as a highly effective solution with which to tackle these challenges. Recent advancements in this field, including techniques like laser texture, laser deposition, laser cladding, and laser modification, have found widespread applications in tribology. Surface-strengthening coatings, prepared via laser manufacturing, stand out as one of the most efficient strategies to mitigate tribological issues. The laser processing-related techniques either alter the surface texture or create a new film, thereby enhancing the mechanical, physical, and chemical properties of the contact surfaces. These innovations have seamlessly integrated into various industrial applications. This comprehensive reprint encompasses surface texturing, laser processing, and post-machining. Various metals, such as cast iron, steel, high-entropy alloy, and Ti-based, Cu-based, Al-based, and Ni-based alloys, are explored in this reprint, with a dedicated focus on leveraging laser surface engineering for tribological enhancements. In the pursuit of ongoing advancements in this field, contributors participate in this reprint, encompassing the domains of laser surface engineering and tribology, in order to delve into and share their insights. We anticipate that this reprint will draw attention to key research trends and state-of-the-art developments in laser surface engineering for tribology.




Coatings Tribology


Book Description

The surface coating field is a rapidly developing area of science and technology that offers new methods and techniques to control friction and wear. New coating types are continually being developed and the potential applications in different industrial fields are ever growing, ranging from machine components and consumer products to medical instruments and prostheses. This book provides an extensive review of the latest technology in the field, addressing techniques such as physical and chemical vapour deposition, the tribological properties of coatings, and coating characterization and performance evaluation techniques. Eleven different cases are examined in close detail to demonstrate the improvement of tribological properties and a guide to selecting coatings is also provided. This second edition is still the only monograph in the field to give a holistic view of the subject and presents all aspects, including test and performance data as well as insights into mechanisms and interactions, thus providing the level of understanding vital for the practical application of coatings. * An extensive review of the latest developments in the field of surface coatings * Presents both theory and practical applications * Includes a guide for selecting coatings