Lattice Quantum Field Theory Of The Dirac And Gauge Fields: Selected Topics


Book Description

Quantum Chromodynamics is the theory of strong interactions: a quantum field theory of colored gluons (Yang-Mills gauge fields) coupled to quarks (Dirac fermion fields). Lattice gauge theory is defined by discretizing spacetime into a four-dimensional lattice — and entails defining gauge fields and Dirac fermions on a lattice. The applications of lattice gauge theory are vast, from the study of high-energy theory and phenomenology to the numerical studies of quantum fields.Lattice Quantum Field Theory of the Dirac and Gauge Fields: Selected Topics examines the mathematical foundations of lattice gauge theory from first principles. It is indispensable for the study of Dirac and lattice gauge fields and lays the foundation for more advanced and specialized studies.




Lattice Quantum Field Theory of the Dirac and Gauge Fields


Book Description

"Quantum Chromodynamics is the theory of strong interactions: a quantum field theory of colored gluons (Yang-Mills gauge fields) coupled to quarks (Dirac fermion fields). Lattice gauge theory is defined by discretizing spacetime into a four-dimensional lattice -- and entails defining gauge fields and Dirac fermions on a lattice. The applications of lattice gauge theory are vast, from the study of high-energy theory and phenomenology to the numerical studies of quantum fields. "Lattice Quantum Field Theory of the Dirac and Gauge Fields: Selected Topics" examines the mathematical foundations of lattice gauge theory from first principles. It is indispensable for the study of Dirac and lattice gauge fields and lays the foundation for more advanced and specialized studies"--Publisher's website.




Lattice Gauge Theories: An Introduction


Book Description

This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.




Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)


Book Description

The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.




Quantum Fields on a Lattice


Book Description

Presents a comprehensive and coherent account of the theory of quantum fields on a lattice.




Quantum Field Theory


Book Description

The only graduate-level textbook on quantum field theory that fully integrates perspectives from high-energy, condensed-matter, and statistical physics Quantum field theory was originally developed to describe quantum electrodynamics and other fundamental problems in high-energy physics, but today has become an invaluable conceptual and mathematical framework for addressing problems across physics, including in condensed-matter and statistical physics. With this expansion of applications has come a new and deeper understanding of quantum field theory—yet this perspective is still rarely reflected in teaching and textbooks on the subject. Developed from a year-long graduate course Eduardo Fradkin has taught for years to students of high-energy, condensed-matter, and statistical physics, this comprehensive textbook provides a fully "multicultural" approach to quantum field theory, covering the full breadth of its applications in one volume. Brings together perspectives from high-energy, condensed-matter, and statistical physics in both the main text and exercises Takes students from basic techniques to the frontiers of physics Pays special attention to the relation between measurements and propagators and the computation of cross sections and response functions Focuses on renormalization and the renormalization group, with an emphasis on fixed points, scale invariance, and their role in quantum field theory and phase transitions Other topics include non-perturbative phenomena, anomalies, and conformal invariance Features numerous examples and extensive problem sets Also serves as an invaluable resource for researchers




Lattice QCD for Nuclear Physics


Book Description

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.




Classical Theory of Gauge Fields


Book Description

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.







High Energy Physics Index


Book Description