Layered Materials for Energy Storage and Conversion


Book Description

The considerable interest in graphene and 2D materials is sparking intense research on layered materials due to their unexpected physical, electronic, chemical, and optical properties. This book will provide a comprehensive overview of the recent and state-of-the-art research progress on layered materials for energy storage and other applications. With a brief introduction to layered materials, the chapters of this book gather various fascinating topics such as electrocatalysis for fuel cells, lithium-ion batteries, sodium-ion batteries, photovoltaic devices, thermoelectric devices, supercapacitors and water splitting. Unique aspects of layered materials in these fields, including novel synthesis and functionalization methods, particular physicochemical properties and consequently enhanced performance are addressed. Challenges and perspectives for layered materials in these fields will also be presented. With contributions from key researchers, Layered Materials for Energy Storage and Conversion will be of interest to students, researchers and engineers worldwide who want a basic overview of the latest progress and future directions.




Layered Materials


Book Description

Layered materials have attracted much attention in this decade because of their high active surface area and the ability to tune the properties through the formation of layered structures for various applications. This compliments the layered materials with high mechanical flexibility, chemical stability, and superior electrical and thermal conductivities, which make them a great alternative for electrochemical applications such as electrochemical energy conversion, storage devices, and environmental remediation. This book offers the state of the art of research on the synthesis, properties, characterization, and electrochemical applications of layered materials and highlights the present challenges related to environmental issues. It provides fundamental, experimental, and theoretical knowledge about layered materials, including graphene, graphitic carbon nitride, boron nitride, and MoS2-, Li-, and Mn-rich oxide materials and MXenes, and elaborates their synthesis, physicochemical properties, and structure-property-electrochemical performance. The book also covers the recent progress in developing layered material-based electrochemical energy conversion systems and storage devices and identifies immediate research needs and directions in developing layered material-based systems for future applications.




2D Materials for Energy Storage and Conversion


Book Description

This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors. 2D Materials for Energy Storage and Conversion is an invaluable reference for researchers and graduate students working with 2D materials for energy storage and conversion in the fields of nanotechnology, electrochemistry, materials chemistry, materials engineering and chemical engineering. Key Features: Provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion technologies Covers the most promising candidates for radically advanced energy storage Covers 2D heterostructures and provides a holistic view of the subject Includes 2D materials beyond graphene, defects engineering, and the main challenges in the field




Electrode Materials for Energy Storage and Conversion


Book Description

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.




Electrochemical Energy Storage


Book Description

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.




Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems


Book Description

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes Discusses the basic principles involved in energy conversion and storage systems Presents the role of nanostructured functional materials in the current scenario of energy-related research and development




Energy Storage and Conversion Materials


Book Description

This book explores the fundamental properties of a wide range of energy storage and conversion materials, covering mainstream theoretical and experimental studies and their applications in green energy. It presents a thorough investigation of diverse physical, chemical, and material properties of rechargeable batteries, supercapacitors, solar cells, and fuel cells, covering the development of theoretical simulations, machine learning, high-resolution experimental measurements, and excellent device performance. Covers potential energy storage (rechargeable batteries and supercapacitors) and energy conversion (solar cells and fuel cells) materials Develops theoretical predictions and experimental observations under a unified quasi-particle framework Illustrates up-to-date calculation results and experimental measurements Describes successful synthesis, fabrication, and measurements, as well as potential applications and near-future challenges Promoting a deep understanding of basic science, application engineering, and commercial products, this work is appropriate for senior graduate students and researchers in materials, chemical, and energy engineering and related disciplines.




Layered Double Hydroxides


Book Description

D.G. Evans, R.C.T. Slade: Structural Aspects of Layered Double Hydroxides.- J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan: Preparation of Layered Double Hydroxides.- C. Taviot-Gueho, F. Leroux: In Situ Polymerization and Intercalation of Polymers in Layered Double Hydroxides.- G.R. Williams, A.I. Khan, D. O'Hare: Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-Ray Powder Diffraction.- F. Li, X. Duan: Applications of Layered Double Hydroxides




Atomic Layer Deposition in Energy Conversion Applications


Book Description

Combining the two topics for the first time, this book begins with an introduction to the recent challenges in energy conversion devices from a materials preparation perspective and how they can be overcome by using atomic layer deposition (ALD). By bridging these subjects it helps ALD specialists to understand the requirements within the energy conversion field, and researchers in energy conversion to become acquainted with the opportunities offered by ALD. With its main focus on applications of ALD for photovoltaics, electrochemical energy storage, and photo- and electrochemical devices, this is important reading for materials scientists, surface chemists, electrochemists, electrotechnicians, physicists, and those working in the semiconductor industry.




Energy Storage and Conversion Devices


Book Description

This book presents a state-of-the-art overview of the research and development in designing electrode and electrolyte materials for Li-ion batteries and supercapacitors. Further, green energy production via the water splitting approach by the hydroelectric cell is also explored. Features include: • Provides details on the latest trends in design and optimization of electrode and electrolyte materials with key focus on enhancement of energy storage and conversion device performance • Focuses on existing nanostructured electrodes and polymer electrolytes for device fabrication, as well as new promising research routes toward the development of new materials for improving device performance • Features a dedicated chapter that explores electricity generation by dissociating water through hydroelectric cells, which are a nontoxic and green source of energy production • Describes challenges and offers a vision for next-generation devices This book is beneficial for advanced students and professionals working in energy storage across the disciplines of physics, materials science, chemistry, and chemical engineering. It is also a valuable reference for manufacturers of electrode/electrolyte materials for energy storage devices and hydroelectric cells.