Le Cycles and Hypersurface Singularities


Book Description

This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Lê numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities.










Real and Complex Singularities


Book Description

This volume collects papers presented at the eighth São Carlos Workshop on Real and Complex Singularities, held at the IML, Marseille, July 2004. Like the workshop, this collection establishes the state of the art and presents new trends, new ideas and new results in all of the branches of singularities. Real and Complex Singularities offers a useful summary of leading ideas in singularity theory, and inspiration for future research.




Singularities II


Book Description

"This is the second part of the Proceedings of the meeting "School and Workshop on the Geometry and Topology of Singularities", held in Cuemavaca, Mexico, from January 8th to 26th of 2007, in celebration of the 60th Birthday of Le Dung Trang." "This volume contains fourteen cutting-edge research articles on geometric and topological aspects of singularities of spaces and maps. By reading this volume, and the accompanying volume on algebraic and analytic aspects of singularities, the reader should gain an appreciation for the depth, breadth, and beauty of the subject, and also find a rich source of questions and problems for future study."--BOOK JACKET.




Singularities I


Book Description




Numerical Control over Complex Analytic Singularities


Book Description

Generalizes the Le cycles and numbers to the case of hyper surfaces inside arbitrary analytic spaces. This book defines the Le-Vogel cycles and numbers, and prove that the Le-Vogel numbers control Thom's $a_f$ condition. It describes the relationship between the Euler characteristic of the Milnor fibre and the Le-Vogel numbers.




Nonlinear Potential Theory and Weighted Sobolev Spaces


Book Description

The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.




Real Enriques Surfaces


Book Description

Deformation classes. p. 89.




Elliptic Genera and Vertex Operator Super-Algebras


Book Description

This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.