Lead-Nickel Electrochemical Batteries


Book Description

The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena. This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of batteries is not fixed; it is subject to constant developments as a result of user feedback and validation processes which are often long and fastidious. This book attempts to show that it is not possible to consider a family of batteries as having fixed, applicable properties and characteristics whatever the application and the technology used in their manufacture. For this reason, the authors have chosen to present the fundamental electrochemical and chemical phenomena involved in as simple and as clear a way as possible. It is essential to be aware of these mechanisms in order to develop suitable theoretical models. This work will be of particular interest to those working in the field of electrical engineering and to industrialists, the final users of these technologies. It will also be of interest to electrochemists, as experts in lead or nickel batteries are becoming fewer and farther between, and their knowledge and practical skills are steadily being lost. Contents Part 1. Universal Characteristics of Batteries 1. Definitions and Methods of Measurement. Part 2. Lead–Acid Batteries 2. The Operation of Lead–Acid Batteries. 3. Internal Composition and Types of Lead–Acid Batteries. 4. Lead Batteries: Main Characteristics. 5. Manufacturing Starting, Lighting and Ignition Batteries. Part 3. Introduction to Nickel-Based Batteries 6. Nickel–Cadmium Batteries. 7. Nickel–Metal Hydride Batteries. 8. Other Nickel-Based Batteries.




Encyclopedia of Electrochemical Power Sources


Book Description

The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations




Battery Reference Book


Book Description

Crompton's Battery Reference Book has become the standard reference source for a wide range of professionals and students involved in designing, manufacturing, and specifying products and systems that use batteries. This book is unique in providing extensive data on specific battery types, manufacturers and suppliers, as well as covering the theory - an aspect of the book which makes an updated edition important for every professional's library. The coverage of different types of battery is fully comprehensive, ranging from minute button cells to large installations weighing several hundred tonnes. - Must-have information and data on all classes of battery in an accessible form - Essential reference for design engineers in automotive and aerospace applications, telecommunications equipment, household appliances, etc. - Informs you of developments over the past five years




Encyclopedia of Electrochemical Power Sources


Book Description

The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike




Advanced Concepts and Technologies for Electric Vehicles


Book Description

This book explains the basic and advanced technology behind the Power Electronics Converters for EV charging, and their significant developments, and introduces the Grid Impact issues that underpin the grid integration of electric vehicles. Advanced Concepts and Technologies for Electric Vehicles reviews state-of-the-art and new configurations and concepts of more electric vehicles and EV charging, mitigating the impact of EV charging on the power grid, and technical considerations of EV charging infrastructures. The book considers the environmental benefits and advantages of electric vehicles and their component devices. It includes case studies of different power electronic converters used for charging EVs. It offers a review of PFC-based AC chargers, WBG-based chargers, and Wireless chargers. The authors also explore multistage charging systems and their possible implementations. The book also examines the challenges and opportunities posed by the progressive integration of electric drive vehicles on the power grid and reported solutions for their mitigation. The book is intended for professionals, researchers, and engineers in the electric vehicle industry as well as advanced students in electrical engineering who benefit from this comprehensive coverage of electric vehicle technology. Readers can get an in-depth insight into the technology deployment in EV transportation and utilize that knowledge to develop novel ideas in the EV area.




Electrochemical Power Sources


Book Description

This book discusses in detail the manufacturing processes, the performances under different condition of operation and the services for which batteries are mainly used.




Smart Grids and Big Data Analytics for Smart Cities


Book Description

This book provides a comprehensive introduction to different elements of smart city infrastructure - smart energy, smart water, smart health, and smart transportation - and how they work independently and together. Theoretical development and practical applications are presented, along with related standards, recommended practices, and professional guidelines. Throughout the book, diagrams and case studies are provided that demonstrate the systems presented, and extensive use of scenarios helps readers better grasp how smart grids, the Internet of Things, big data analytics, and trading models can improve road safety, healthcare, smart water management, and a low-carbon economy. A must-read for practicing engineers, consultants, regulators, utility operators, and environmentalists involved in smart city development, the book will also appeal to city planners and designers, as well as upper-level undergraduate and graduate students studying energy, environmental science, technology, economics, signal processing, information science, and power engineering.




Propulsion Systems


Book Description




Electrochemical Energy


Book Description

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.




Electrochemical Power Sources: Fundamentals, Systems, and Applications


Book Description

Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. - Presents the relationship between chemical and structure material properties and cell safety - Relates cell and battery design to safety as well as system operation parameters to safety - Outlines the influences of abuses on safety and the relationship to battery testing - Explores the limitations for transport and storage of cells and batteries - Includes recycling, disposal and second use of lithium ion batteries