Learn Business Analytics in Six Steps Using SAS and R


Book Description

Apply analytics to business problems using two very popular software tools, SAS and R. No matter your industry, this book will provide you with the knowledge and insights you and your business partners need to make better decisions faster. Learn Business Analytics in Six Steps Using SAS and R teaches you how to solve problems and execute projects through the "DCOVA and I" (Define, Collect, Organize, Visualize, Analyze, and Insights) process. You no longer need to choose between the two most popular software tools. This book puts the best of both worlds—SAS and R—at your fingertips to solve a myriad of problems, whether relating to data science, finance, web usage, product development, or any other business discipline. What You'll Learn Use the DCOVA and I process: Define, Collect, Organize, Visualize, Analyze and Insights. Harness both SAS and R, the star analytics technologies in the industry Use various tools to solve significant business challenges Understand how the tools relate to business analytics See seven case studies for hands-on practice Who This Book Is For This book is for all IT professionals, especially data analysts, as well as anyone who Likes to solve business problems and is good with logical thinking and numbers Wants to enter the analytics world and is looking for a structured book to reach that goal Is currently working on SAS , R, or any other analytics software and strives to use its full power




Supply Chain Analytics and Modelling


Book Description

An incredible volume of data is generated at a very high speed within the supply chain and it is necessary to understand, use and effectively apply the knowledge learned from analyzing data using intelligent business models. However, practitioners and students in the field of supply chain management face a number of challenges when dealing with business models and mathematical modelling. Supply Chain Analytics and Modelling presents a range of business analytics models used within the supply chain to help readers develop knowledge on a variety of topics to overcome common issues. Supply Chain Analytics and Modelling covers areas including supply chain planning, single and multi-objective optimization, demand forecasting, product allocations, end-to-end supply chain simulation, vehicle routing and scheduling models. Learning is supported by case studies of specialist software packages for each example. Readers will also be provided with a critical view on how supply chain management performance measurement systems have been developed and supported by reliable and accurate data available in the supply chain. Online resources including lecturer slides are available.




Machine Learning for Decision Makers


Book Description

Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.




SAS Programming for R Users


Book Description

SAS Programming for R Users, based on the free SAS Education course of the same name, is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS that replicate familiar functions and capabilities in R. This book covers a wide range of topics including the basics of the SAS programming language, how to import data, how to create new variables, random number generation, linear modeling, Interactive Matrix Language (IML), and many other SAS procedures. This book also explains how to write R code directly in the SAS code editor for seamless integration between the two tools. Exercises are provided at the end of each chapter so that you can test your knowledge and practice your programming skills.




Step-By-Step Basic Statistics Using SAS


Book Description

Student guide addresses how to use the SAS windowing environment, how to create SAS data sets, basic descriptive statistics; correlation and regression; t tests; analysis of variance (ANOVA), and the chi-square test of independence. Apply what you've learned with exercises in the companion text. Student guide addresses how to use the SAS windowing environment, how to create SAS data sets, basic descriptive statistics; correlation and regression; t tests; analysis of variance (ANOVA), and the chi-square test of independence. Apply what you've learned with exercises in the companion text.




Customer and Business Analytics


Book Description

Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.




Applied Analytics through Case Studies Using SAS and R


Book Description

Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniques Create and apply analytical strategies Who This Book Is For Data scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling.




Predictive Analytics using R


Book Description

This book is about predictive analytics. Yet, each chapter could easily be handled by an entire volume of its own. So one might think of this a survey of predictive modeling. A predictive model is a statistical model or machine learning model used to predict future behavior based on past behavior. In order to use this book, one should have a basic understanding of mathematical statistics - it is an advanced book. Some theoretical foundations are laid out but not proven, but references are provided for additional coverage. Every chapter culminates in an example using R. R is a free software environment for statistical computing and graphics. You may download R, from a preferred CRAN mirror at http: //www.r-project.org/. The book is organized so that statistical models are presented first (hopefully in a logical order), followed by machine learning models, and then applications: uplift modeling and time series. One could use this a textbook with problem solving in R-but there are no "by-hand" exercises.




Text Mining and Analysis


Book Description

Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.




Learning SAS by Example


Book Description

Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter.