Learning Science Process Skills


Book Description

Science process skills are the skills that scientists use to study and investigate the world. They are the vehicle for generating content and a means by which concepts are formed. This book is presented in three parts. Part 1 attends to the kinds of science skills appropriate for preschool and the lower elementary grades including observation, classification, communication, measurement, prediction and influence. Part 2 includes the more complex, integrated skills that are needed to plan and conduct controlled scientific investigations. Part 3 provides a guide to teaching scientific facts and concepts through process skills. Each chapter contains objectives, lists of materials, suggested directions and blanks for responses, self-check questions, and extension activities. The activities are designed to allow students to work at their own pace. At the end of each chapter, a mastery test is provided. An appendix lists simple, inexpensive materials that are needed to do the exercises in this book. (CW)




Teaching, Learning and Assessing Science 5 - 12


Book Description

`Professor Harlen has, once again, provided the leading text on primary science. This eminently readable book sets out a clear account of our understanding of learning, teaching and assessment and, through the skilful use of examples, explores the implications of this for science teachers of pupils aged five to 12. By emphasizing the importance of research evidence and the way in which it should underpin practice, this new edition challenges everyone involved in science education to reflect again on whether we are providing the most appropriate learning opportunities for our pupils. It is certainly a book which will be highly recommended, referred to on many occasions and used extensively′ - Dr Derek Bell, Chief Executive, The Association for Science Education This thoroughly revised and completely up-to-date new edition provides an excellent theoretical framework for teaching science that is firmly grounded in classroom practice and covers all stages of education for students aged five to 12 years. The author details a constructivist view of learning, which recognizes that children already have ideas about the world in which they live, and gives advice on how teachers can help children to develop their understanding and change their perception to a more scientific view. A particular feature is the focus on formative assessment as a framework for discussion on how to help students develop their understanding, enquiry skills and positive attitudes to scientific investigation. The wide range of topics covered include: The nature of students′ learning in science The goals of science education Gathering and interpreting information about students′ ′s ideas Helping development of scientific ideas Gathering and interpreting evidence of students′ enquiry skills and attitudes Strategies for helping development of students′ qnquiry skills and attitudes The learner′s role in learning Summarising and reporting learning Motivating learning Teachers and children′s questions Resources for learning science Managing science in the school Each chapter features useful summaries, points for reflection and further reading, making this acclaimed book indispensable reading for all primary and practitioners and students who want a book that will authoritatively inform, inspire and instruct their science teaching.




Inquiry and the National Science Education Standards


Book Description

Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.




Teaching Science to Every Child


Book Description

Teaching Science to Every Child proposes a fresh perspective for teaching school science and draws upon an extensive body of classroom research to meaningfully address the achievement gap in science education. Settlage and Southerland begin from the point of view that science can be thought of as a culture, rather than as a fixed body of knowledge. Throughout this book, the idea of culture is used to illustrate how teachers can guide all students to be successful in science while still being respectful of students' ethnic heritages and cultural traditions. By combining a cultural view of science with instructional approaches shown to be effective in a variety of settings, the authors provide elementary and middle school teachers with a conceptual framework as well as pedagogical approaches which support the science learning of a diverse array of students.




The Teaching of Science in Primary Schools


Book Description

Presenting an up-to-date discussion of the many aspects of teaching primary science, this best-selling book contains a strong focus on constructivist learning and the role of social interaction in learning.




Research in Early Childhood Science Education


Book Description

This book emphasizes the significance of teaching science in early childhood classrooms, reviews the research on what young children are likely to know about science and provides key points on effectively teaching science to young children. Science education, an integral part of national and state standards for early childhood classrooms, encompasses not only content-based instruction but also process skills, creativity, experimentation and problem-solving. By introducing science in developmentally appropriate ways, we can support young children’s sensory explorations of their world and provide them with foundational knowledge and skills for lifelong science learning, as well as an appreciation of nature. This book emphasizes the significance of teaching science in early childhood classrooms, reviews the research on what young children are likely to know about science, and provides key points on effectively teaching young children science. Common research methods used in the reviewed studies are identified, methodological concerns are discussed and methodological and theoretical advances are suggested.




Benchmarks for Science Literacy


Book Description

Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.




Scientific Teaching


Book Description

Seasoned classroom veterans, pre-tenured faculty, and neophyte teaching assistants alike will find this book invaluable. HHMI Professor Jo Handelsman and her colleagues at the Wisconsin Program for Scientific Teaching (WPST) have distilled key findings from education, learning, and cognitive psychology and translated them into six chapters of digestible research points and practical classroom examples. The recommendations have been tried and tested in the National Academies Summer Institute on Undergraduate Education in Biology and through the WPST. Scientific Teaching is not a prescription for better teaching. Rather, it encourages the reader to approach teaching in a way that captures the spirit and rigor of scientific research and to contribute to transforming how students learn science.