The Professional Knowledge Base of Science Teaching


Book Description

Over the past twenty years, much has been written about the knowledge bases thought necessary to teach science. Shulman has outlined seven knowledge domains needed for teaching, and others, such as Tamir, have proposed somewhat similar domains of knowledge, specifically for science teachers. Aspects of this knowledge have changed because of shifts in curriculum thinking, and the current trends in science education have seen a sharp increase in the significance of the knowledge bases. The development of a standards-based approach to the quality of science teaching has become common in the Western world, and phrases such as “evidence-based practice” have been tossed around in the attempt to “measure” such quality. The Professional Knowledge Base of Science Teaching explores the knowledge bases considered necessary for science teaching. It brings together a number of researchers who have worked with science teachers, and they address what constitutes evidence of high quality science teaching, on what basis such evidence can be judged, and how such evidence reflects the knowledge basis of the modern day professional science teacher. This is the second book produced from the Monash University- King’s College London International Centre for the Study of Science and Mathematics Curriculum. The first book presented a big picture of what science education might be like if values once again become central while this book explores what classroom practices may look like based on such a big picture.




Science Teachers’ Knowledge Development


Book Description

Jan van Driel presents an overview of his research on the professional knowledge that science teachers develop and enact in their teaching to promote student understanding and engagement in science.




EBOOK: Learning Science Teaching: Developing A Professional Knowledge Base


Book Description

"Bishop and Denley in Learning Science Teaching have focused as much on good pedagogy as on the peculiarities of science teaching. It is for this reason that their book will be of value not only to trainees in education, but also to a range of professionals working in schools, Higher Education and, in particular, to those responsible for planning and delivering CPD. It is far more than a test for trainee teachers." Science Teacher Education "Any science teacher looking for ways to improve their teaching will find this book helpful...there is perceptive discussion of almost everything that can happen in a science classroom, and related work outside it." Physics Education What do you need to know to be a successful science teacher? How do you develop or acquire that knowledge? If you are just embarking on your learning journey as a science teacher, or are involved in supporting beginning and early career teachers on their way, then this book is written for you. The authors show how the route to success involves the development of a personal, yet distinctive and complex set of inter-related professional knowledge bases. Throughout the book, the classroom practice of a group of highly accomplished science teachers is analysed to reveal the knowledge bases that they have acquired, which the reader can then reflect upon. In addition, students provide penetrating insights into the kinds of science teaching that engages them. The book argues that highly accomplished science teachers are also continually learning science teachers. It stresses the importance of learning through others, by participation in communities of science practitioners, as well as individual learning through classroom research. Whether you are a beginning teacher or a more experienced teacher looking to support beginning and early career teachers, this book offers a rich source of experiences, ideas and insights to support you on your journey to becoming a successful science teacher.




Science Teachers' Learning


Book Description

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.




Ambitious Science Teaching


Book Description

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.




Professional Development for Inquiry-Based Science Teaching and Learning


Book Description

​This book examines the implementation of inquiry-based approaches in science teaching and learning. It explores the ways that those approaches could be promoted across various contexts in Europe through initial teacher preparation, induction programmes and professional development activities. It illustrates connections between scientific knowledge deriving from the science education research community, teaching practices deriving from the science teachers’ community, and educational innovation. Inquiry-Based Science Teaching and Learning (IBST/L) has been promoted as a policy response to pressing educational challenges, including disengagement from science learning and the need for citizens to be in a position to evaluate evidence on pressing socio-scientific issues. Effective IBST/L requires well-prepared and skilful teachers, who can act as facilitators of student learning and who are able to adapt inquiry-based activity sequences to their everyday teaching practice. Teachers also need to engage creatively with the process of nurturing student abilities and to acquire new assessment competences. The task of preparing teachers for IBST/L is a challenging one. This book is a resource for the implementation of inquiry-oriented approaches in science education and illustrates ways of promoting IBST/L through initial teacher preparation, induction and professional development programmes.




Second International Handbook of Science Education


Book Description

The International Handbook of Science Education is a two volume edition pertaining to the most significant issues in science education. It is a follow-up to the first Handbook, published in 1998, which is seen as the most authoritative resource ever produced in science education. The chapters in this edition are reviews of research in science education and retain the strong international flavor of the project. It covers the diverse theories and methods that have been a foundation for science education and continue to characterize this field. Each section contains a lead chapter that provides an overview and synthesis of the field and related chapters that provide a narrower focus on research and current thinking on the key issues in that field. Leading researchers from around the world have participated as authors and consultants to produce a resource that is comprehensive, detailed and up to date. The chapters provide the most recent and advanced thinking in science education making the Handbook again the most authoritative resource in science education.




Advancing Scientific Research in Education


Book Description

Transforming education into an evidence-based field depends in no small part on a strong base of scientific knowledge to inform educational policy and practice. Advancing Scientific Research in Education makes select recommendations for strengthening scientific education research and targets federal agencies, professional associations, and universitiesâ€"particularly schools of educationâ€"to take the lead in advancing the field.




Educational Research and Innovation Measuring Innovation in Education 2019 What Has Changed in the Classroom?


Book Description

Measuring innovation in education and understanding how it works is essential to improve the quality of the education sector. Monitoring systematically how pedagogical practices evolve would considerably increase the international education knowledge base. We need to examine whether, and how ...




Understanding and Developing Science Teachers' Pedagogical Content Knowledge


Book Description

There has been a growing interest in the notion of a scholarship of teaching. Such scholarship is displayed through a teacher’s grasp of, and response to, the relationships between knowledge of content, teaching and learning in ways that attest to practice as being complex and interwoven. Yet attempting to capture teachers’ professional knowledge is difficult because the critical links between practice and knowledge, for many teachers, is tacit. Pedagogical Content Knowledge (PCK) offers one way of capturing, articulating and portraying an aspect of the scholarship of teaching and, in this case, the scholarship of science teaching. The research underpinning the approach developed by Loughran, Berry and Mulhall offers access to the development of the professional knowledge of science teaching in a form that offers new ways of sharing and disseminating this knowledge. Through this Resource Folio approach (comprising CoRe and PaP-eRs) a recognition of the value of the specialist knowledge and skills of science teaching is not only highlighted, but also enhanced. The CoRe and PaP-eRs methodology offers an exciting new way of capturing and portraying science teachers’ pedagogical content knowledge so that it might be better understood and valued within the profession. This book is a concrete example of the nature of scholarship in science teaching that is meaningful, useful and immediately applicable in the work of all science teachers (preservice, in-service and science teacher educators). It is an excellent resource for science teachers as well as a guiding text for teacher education.