Analog and Digital Electronic Circuits


Book Description

This book introduces the foundations and fundamentals of electronic circuits. It broadly covers the subjects of circuit analysis, as well as analog and digital electronics. It features discussion of essential theorems required for simplifying complex circuits and illustrates their applications under different conditions. Also, in view of the emerging potential of Laplace transform method for solving electrical networks, a full chapter is devoted to the topic in the book. In addition, it covers the physics and technical aspects of semiconductor diodes and transistors, as well as discrete-time digital signals, logic gates, and combinational logic circuits. Each chapter is presented as complete as possible, without the reader having to refer to any other book or supplementary material. Featuring short self-assessment questions distributed throughout, along with a large number of solved examples, supporting illustrations, and chapter-end problems and solutions, this book is ideal for any physics undergraduate lecture course on electronic circuits. Its use of clear language and many real-world examples make it an especially accessible book for students unfamiliar or unsure about the subject matter.




Lecture Notes in Analog Electronics


Book Description

The book opens a magic miniature world of electronics to the reader. The book addresses what small means in terms of electronics and what clean means in terms of modern electronic technology. Consequently, the reader understands why the most advanced civilization of the ancient world – the Egyptians – was not capable to do electronics. The book also discusses functionalities of the low-voltage electronic components with the aim to implement them in electronic circuit design. At the same time, it also opens the space of electronic component design to the readers be it discrete or integrated. The book has an introduction section, 11 chapters, an appendix, index, and list of literature. Appendix A discusses a set of solved problems, Appendix B presents SPICE simulation examples, and Appendix C presents component numbering in marketing environment.




Lecture Notes in Analog Electronics


Book Description

This book discusses larger signal amplifiers (denoted as PA). Large signal amplifiers are dealing with signals whose magnitude is such that the operation of the active element can no longer be considered linear. They are usually designed to get as much power gain and efficiency as possible. That is why they are often called power amplifiers. In this book, two implementations of PA are considered. First, it is of interest to obtain large signals (current or voltage) at the output of a cascade of direct coupled amplifiers. In this case, linearity, frequency response, and speed are the most important requirements. Second are real power amplifiers where the power delivered to the load is of primary interest. Of course, efficiency, linearity, and high frequency response are of interest, too. A very special attention is paid to modern power electronic components such as Power BJT, VDMOS, IGBT, SiC MOS, and GaN HEMT. DC and switching properties of all these devices are studied in much detail. This book also includes a set of appendices which cover: solved problems, SPICE simulation results for selected set of circuits, and a short review of microelectronic technology process




Lecture Notes in Analogue Electronics


Book Description

This book is mostly devoted to amplification of analogue signals. It covers different technologies (bipolar, MOS, and MES), and different frequency ranges but it always deals with small signals. Analogue signals processed in electronic system may have a wide variety of origins. Among them we have the signals coming from sensors (electro-mechanical, electro-magnetic, electro-chemical, electro-acoustic, electro-optical, etc.), the signals coming from antennas being produced by another electronic system or are simply cosmic produced, and signals that are generated within the electronic systems. The common property of most of the signals is their small amplitude. In many cases it is below a micro-volt. Since at the output of the system we most frequently need a high amplitude signal the main action undertaken in the electronic system before any further processing is to amplify.




Foundations of Analog and Digital Electronic Circuits


Book Description

Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems.+Balances circuits theory with practical digital electronics applications.+Illustrates concepts with real devices.+Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach.+Written by two educators well known for their innovative teaching and research and their collaboration with industry.+Focuses on contemporary MOS technology.




Principles of Analog Electronics


Book Description

In the real world, most signals are analog, spanning continuously varying values. Circuits that interface with the physical environment need to be able to process these signals. Principles of Analog Electronics introduces the fascinating world of analog electronics, where fields, circuits, signals and systems, and semiconductors meet. Drawing on the author’s teaching experience, this richly illustrated, full-color textbook expertly blends theory with practical examples to give a clear understanding of how real electronic circuits work. Build from the Essentials of Math, Physics, and Chemistry to Electronic Components, Circuits, and Applications Building a solid foundation, the book first explains the mathematics, physics, and chemistry that are essential for grasping the principles behind the operation of electronic devices. It then examines the theory of circuits through models and important theorems. The book describes and analyzes passive and active electronic devices, focusing on fundamental filters and common silicon-based components, including diodes, bipolar junction transistors, and metal–oxide–semiconductor field-effect transistors (MOSFETs). It also shows how semiconductor devices are used to design electronic circuits such as rectifiers, power suppliers, clamper and clipper circuits, and amplifiers. A chapter explores actual applications, from audio amplifiers and FM radios to battery chargers. Delve Deeper into Analog Electronics through Curiosities, Key Personalities, and Practical Examples Each chapter includes helpful summaries with key points, jargon, and terms, as well as exercises to test your knowledge. Practical tables illustrate the coding schemes to help identify commercial passive and active components. Throughout, sidebars highlight "curiosities," interesting observations, and examples that make the subject more concrete. This textbook offers a truly comprehensive introduction to the fundamentals of analog electronics, including essential background concepts. Taking a fresh approach, it connects electronics to its importance in daily life, from music to medicine and more.




Advanced Electrical and Electronics Engineering


Book Description

2010 First International Conference on Electrical and Electronics Engineering was held in Wuhan, China December 4-5. Advanced Electrical and Electronics Engineering book contains 72 revised and extended research articles written by prominent researchers participating in the conference. Topics covered include, Power Engineering, Telecommunication, Control engineering, Signal processing, Integrated circuit, Electronic amplifier, Nano-technologies, Circuits and networks, Microelectronics, Analog circuits, Digital circuits, Nonlinear circuits, Mixed-mode circuits, Circuits design, Sensors, CAD tools, DNA computing, Superconductivity circuits. Electrical and Electronics Engineering will offer the state of art of tremendous advances in Electrical and Electronics Engineering and also serve as an excellent reference work for researchers and graduate students working with/on Electrical and Electronics Engineering.




Analog Electronics Applications


Book Description

This comprehensive text discusses the fundamentals of analog electronics applications, design, and analysis. Unlike the physics approach in other analog electronics books, this text focuses on an engineering approach, from the main components of an analog circuit to general analog networks. Concentrating on development of standard formulae for conventional analog systems, the book is filled with practical examples and detailed explanations of procedures to analyze analog circuits. The book covers amplifiers, filters, and op-amps as well as general applications of analog design.




Linear and Nonlinear Circuits: Basic & Advanced Concepts


Book Description

This book provides readers with the necessary background information and advanced concepts in the field of circuits, at the crossroads between physics, mathematics and system theory. It covers various engineering subfields, such as electrical devices and circuits, and their electronic counterparts. Based on the idea that a modern university course should provide students with conceptual tools to understand the behavior of both linear and nonlinear circuits, to approach current problems posed by new, cutting-edge devices and to address future developments and challenges, the book places equal emphasis on linear and nonlinear, two‐terminal and multi‐terminal, as well as active and passive circuit components. The theory is developed systematically, starting with the simplest circuits (linear, time-invariant and resistive) and providing food for thought on nonlinear circuits, potential functions, linear algebra and geometrical interpretations of selected results. Contents are organized into a set of first‐level and a set of advanced‐level topics. The book is rich in examples and includes numerous solved problems. Further topics, such as signal processing and modeling of non-electric physical phenomena (e.g., hysteresis or biological oscillators) will be discussed in volume 2.




ANALOG ELECTRONICS


Book Description

This text offers a comprehensive introduction to a wide, relevant array of topics in analog electronics. It is intended for students pursuing courses in electrical, electronics, computer, and related engineering disciplines. Beginning with a review of linear circuit theory and basic electronic devices, the text moves on to present a detailed, practical understanding of many analog integrated circuits. The most commonly used analog IC to build practical circuits is the operational amplifier or op-amp. Its characteristics, basic configurations and applications in the linear and nonlinear circuits are explained. Modern electronic systems employ signal generators, analog filters, voltage regulators, power amplifiers, high frequency amplifiers and data converters. Commencing with the theory, the design of these building blocks is thoroughly covered using integrated circuits. The development of microelectronics technology has led to a parallel growth in the field of Micro-electromechanical Systems (MEMS) and Nano-electromechanical Systems (NEMS). The IC sensors for different energy forms with their applications in MEMS components are introduced in the concluding chapter. Several computer-based simulations of electronic circuits using PSPICE are presented in each chapter. These examples together with an introduction to PSPICE in an Appendix provide a thorough coverage of this simulation tool that fully integrates with the material of each chapter. The end-of-chapter problems allow students to test their comprehension of key concepts. The answers to these problems are also given.