Lecture Notes in Cosmology


Book Description

Cosmology has become a very active research field in the last decades thanks to the impressing improvement of our observational techniques which have led to landmark discoveries such as the accelerated expansion of the universe, and have put physicists in front of new mysteries to unveil, such as the quest after the nature of dark matter and dark energy. These notes offer an approach to cosmology, covering fundamental topics in the field: the expansion of the universe, the thermal history, the evolution of small cosmological perturbations and the anisotropies in the cosmic microwave background radiation. Some extra topics are presented in the penultimate chapter and some standard results of physics and mathematics are available in the last chapter in order to provide a self-contained treatment. These notes offer an in-depth account of the above-mentioned topics and are aimed to graduate students who want to build an expertise in cosmology.




Lectures on Cosmology


Book Description

The lectures that four authors present in this volume investigate core topics related to the accelerated expansion of the Universe. Accelerated expansion occured in the ?36 very early Universe – an exponential expansion in the in ationary period 10 s after the Big Bang. This well-established theoretical concept had rst been p- posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the observable universe, and simultaneously by Alexei Starobinski, and has since then been developed by many authors in great theoretical detail. An accelerated expansion of the late Universe at redshifts z




Cosmology


Book Description

The author – a leading theoretical cosmologist – expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.




Quantum Cosmology


Book Description

Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.




Modern Cosmology


Book Description

The exploration of the Universe, as conducted by physicists, astronomers, and cosmologists was one of the greatest intellectual adventures of the mid-twentieth century. This book, first published in 1971, tells the story of their achievements and the insight gained into the structure, history, working and scale of our Universe. Dr Sciama describes the major components of the Universe as understood at the beginning of the 1970s: the stars, galaxies, radio-galaxies and quasi-stellar objects. He discusses in detail the red shift of the lines in their optical spectra, which leads to the idea that the Universe is expanding. Theoretical discussion of the expanding Universe suggests the possibility that intergalactic space may contain a significant quantity of matter and be the seat of important physical activity. The issues involved are thoroughly debated. Also discussed is the discover and significance of the 3'K' cosmic microwave radiation, its relation to the hot big bang and the helium problem, to cosmic high energy processes and to questions of isotropy.




Quantum Gravity and Quantum Cosmology


Book Description

Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.




Data Analysis in Cosmology


Book Description

The amount of cosmological data has dramatically increased in the past decades due to an unprecedented development of telescopes, detectors and satellites. Efficiently handling and analysing new data of the order of terabytes per day requires not only computer power to be processed but also the development of sophisticated algorithms and pipelines. Aiming at students and researchers the lecture notes in this volume explain in pedagogical manner the best techniques used to extract information from cosmological data, as well as reliable methods that should help us improve our view of the universe.




Statistical Physics for Cosmic Structures


Book Description

This book has its roots in a series of collaborations in the last decade at the interface between statistical physics and cosmology. The speci?c problem which initiated this research was the study of the clustering properties of galaxies as revealed by large redshift surveys, a context in which concepts of modern statistical physics (e. g. scale-invariance, fractality. . ) ?nd ready application. In recent years we have considerably broadened the range of problems in cosmology which we have addressed, treating in particular more theoretical issues about the statistical properties of standard cosmological models. What is common to all this research, however, is that it is informed by a perspective and methodology which is that of statistical physics. We can say that, beyond its speci?c scienti?c content, this book has an underlying thesis: such interdisciplinary research is an exciting playground for statistical physics, and one which can bring new and useful insights into cosmology. The book does not represent a ?nal point, but in our view, a marker in the development of this kind of research, which we believe can go very much further in the future. Indeed as we complete this book, new developments - which unfortunately we have not been able to include here - have been made on some of the themes described here. Our focus in this book is on the problem of structure in cosmology.




Astroparticle Physics and Cosmology


Book Description

Cosmology and astroparticle physics have seen an avalanche of discoveries in the past decade (IceCube - high energy neutrinos, LIGO - gravitational waves, Fermi- gamma-ray telescope, Xenon-1T - dark matter detection, PLANCK- cosmic microwave radiation, EHT picture of black hole, SDSS -galaxy surveys), all of which require a multidisciplinary background for analyzing the phenomena. The arena for testing particle physics models is in the multimessenger astronomical observations and at the same time cosmology now requires a particle physics basis for explaining many phenomena. This book discusses the theoretical tools of particle physics and general relativity which are essential for understanding and correlating diverse astronomical observations.




Inflationary Cosmology


Book Description

Some 25 years after the birth of inflationary cosmology, this volume sets out to provide both an authoritative and pedagogical introduction and review of the current state of the field. Readers learn about the arguments supporting the many different scenarios of cosmic inflation. Articles are written by eminent scientists, many of whom have made pioneering contributions to the field of inflationary cosmology.