Lecture Notes in Rotorcraft Engineering


Book Description

This textbook is a multi-disciplinary compendium that includes several aspects of rotorcraft technology. It introduces the reader to the aerodynamic aspects of rotary wings and presents experimental techniques for aerodynamics. The chapters also cover rotorcraft engines and rotorcraft steady-state flight performance and stability. It explores several aspects of the tiltrotor configuration and lists challenges in their design, modelling and simulation. The reader will also find an introductory overview of flight control systems for rotorcraft, as well as the conceptual and preliminary design concepts for a conventional helicopter. This textbook contains video recordings of computer simulations that can be used alongside the main text.




Introduction to Aircraft Flight Mechanics


Book Description

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.




Helicopter Engineering


Book Description




Fundamentals of Helicopter Dynamics


Book Description

Helicopter Dynamics Introduced in an Organized and Systematic Manner A result of lecture notes for a graduate-level introductory course as well as the culmination of a series of lectures given to designers, engineers, operators, users, and researchers, Fundamentals of Helicopter Dynamics provides a fundamental understanding and a thorough overview of helicopter dynamics and aerodynamics. Written at a basic level, this text starts from first principles and moves fluidly onward from simple to more complex systems. Gain Valuable Insight on Helicopter Theory Divided into 11 chapters, this text covers historical development, hovering and vertical flight, simplified rotor blade model in flap mode, and forward flight. It devotes two chapters to the aeroelastic response and stability analysis of isolated rotor blade in uncoupled and coupled modes. Three chapters address the modeling of coupled rotor–fuselage dynamics and the associated flight dynamic stability, and provide a simplified analysis of the ground resonance aeromechanical stability of a helicopter. Explains equations derived from first principles and approximations Contains a complete set of equations which can be used for preliminary studies Requires a basic first–level course in dynamics, as well as a basic first–level course in aerodynamics Useful for any student who wants to learn the complexities of dynamics in a flying vehicle, Fundamentals of Helicopter Dynamics is an ideal resource for aerospace/aeronautical, helicopter, and mechanical/control engineers, as well as air force schools and helicopter/rotorcraft manufacturers.




Fundamentals of Helicopter Dynamics


Book Description

Helicopter Dynamics Introduced in an Organized and Systematic MannerA result of lecture notes for a graduate-level introductory course as well as the culmination of a series of lectures given to designers, engineers, operators, users, and researchers, Fundamentals of Helicopter Dynamics provides a fundamental understanding and a thorough overview o




Flight Mechanics Modeling and Analysis


Book Description

Flight Mechanics Modeling and Analysis comprehensively covers flight mechanics and flight dynamics using a systems approach. This book focuses on applied mathematics and control theory in its discussion of flight mechanics to build a strong foundation for solving design and control problems in the areas of flight simulation and flight data analysis. The second edition has been expanded to include two new chapters and coverage of aeroservoelastic topics and engineering mechanics, presenting more concepts of flight control and aircraft parameter estimation. This book is intended for senior undergraduate aerospace students taking Aircraft Mechanics, Flight Dynamics & Controls, and Flight Mechanics courses. It will also be of interest to research students and R&D project-scientists of the same disciplines. Including end-of-chapter exercises and illustrative examples with a MATLAB®-based approach, this book also includes a Solutions Manual and Figure Slides for adopting instructors. Features: • Covers flight mechanics, flight simulation, flight testing, flight control, and aeroservoelasticity. • Features artificial neural network- and fuzzy logic-based aspects in modeling and analysis of flight mechanics systems: aircraft parameter estimation and reconfiguration of control. • Focuses on a systems-based approach. • Includes two new chapters, numerical simulation examples with MATLAB®-based implementations, and end-of-chapter exercises. • Includes a Solutions Manual and Figure Slides for adopting instructors.




Concurrent Engineering: Tools and Technologies for Mechanical System Design


Book Description

These proceedings contain lectures presented at the NATO Advanced Study Institute on Concurrent Engineering Tools and Technologies for Mechanical System Design held in Iowa City, Iowa, 25 May -5 June, 1992. Lectures were presented by leaders from Europe and North America in disciplines contributing to the emerging international focus on Concurrent Engineering of mechanical systems. Participants in the Institute were specialists from throughout NATO in disciplines constituting Concurrent Engineering, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into the following five parts: Part 1 Basic Concepts and Methods Part 2 Application Sectors Part 3 Manufacturing Part 4 Design Sensitivity Analysis and Optimization Part 5 Virtual Prototyping and Human Factors Each of the parts is comprised of papers that present state-of-the-art concepts and methods in fields contributing to Concurrent Engineering of mechanical systems. The lead-off papers in each part are based on invited lectures, followed by papers based on contributed presentations made by participants in the Institute.







The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 1


Book Description

This proceeding comprises peer-reviewed papers of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), held from 15-17 November 2021 in Jeju, South Korea. This book deals with various themes on computational fluid dynamics, wind tunnel testing, flow visualization, UAV design, flight simulation, satellite attitude control, aeroelasticity and control, combustion analysis, fuel injection, cooling systems, spacecraft propulsion and so forth. So, this book can be very helpful not only for the researchers of universities and academic institutes, but also for the industry engineers who are interested in the current and future advanced topics in aerospace technology.




The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2


Book Description

This proceeding comprises peer-reviewed papers of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), held from 15-17 November 2021 in Jeju, South Korea. This book deals with various themes on computational fluid dynamics, wind tunnel testing, flow visualization, UAV design, flight simulation, satellite attitude control, aeroelasticity and control, combustion analysis, fuel injection, cooling systems, spacecraft propulsion and so forth. So, this book can be very helpful not only for the researchers of universities and academic institutes, but also for the industry engineers who are interested in the current and future advanced topics in aerospace technology.