Introduction to the Representation Theory of Compact and Locally Compact Groups


Book Description

Because of their significance in physics and chemistry, representation of Lie groups has been an area of intensive study by physicists and chemists, as well as mathematicians. This introduction is designed for graduate students who have some knowledge of finite groups and general topology, but is otherwise self-contained. The author gives direct and concise proofs of all results yet avoids the heavy machinery of functional analysis. Moreover, representative examples are treated in some detail.




Lie Algebras and Locally Compact Groups


Book Description

This volume presents lecture notes based on the author's courses on Lie algebras and the solution of Hilbert's fifth problem. In chapter 1, "Lie Algebras," the structure theory of semi-simple Lie algebras in characteristic zero is presented, following the ideas of Killing and Cartan. Chapter 2, "The Structure of Locally Compact Groups," deals with the solution of Hilbert's fifth problem given by Gleason, Montgomery, and Zipplin in 1952.







Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles


Book Description

This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.




Representations of Compact Lie Groups


Book Description

This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.




Locally Compact Groups


Book Description

Locally compact groups play an important role in many areas of mathematics as well as in physics. The class of locally compact groups admits a strong structure theory, which allows to reduce many problems to groups constructed in various ways from the additive group of real numbers, the classical linear groups and from finite groups. The book gives a systematic and detailed introduction to the highlights of that theory. In the beginning, a review of fundamental tools from topology and the elementary theory of topological groups and transformation groups is presented. Completions, Haar integral, applications to linear representations culminating in the Peter-Weyl Theorem are treated. Pontryagin duality for locally compact Abelian groups forms a central topic of the book. Applications are given, including results about the structure of locally compact Abelian groups, and a structure theory for locally compact rings leading to the classification of locally compact fields. Topological semigroups are discussed in a separate chapter, with special attention to their relations to groups. The last chapter reviews results related to Hilbert's Fifth Problem, with the focus on structural results for non-Abelian connected locally compact groups that can be derived using approximation by Lie groups. The book is self-contained and is addressed to advanced undergraduate or graduate students in mathematics or physics. It can be used for one-semester courses on topological groups, on locally compact Abelian groups, or on topological algebra. Suggestions on course design are given in the preface. Each chapter is accompanied by a set of exercises that have been tested in classes.




Lectures on Lie Groups


Book Description

This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of . Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.




Continuous Bounded Cohomology of Locally Compact Groups


Book Description

Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.




Lie Groups


Book Description

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.