Lectures in Abstract Algebra


Book Description

The present volume is the second in the author's series of three dealing with abstract algebra. For an understanding of this volume a certain familiarity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of the fundamental concepts needed have been treated again. In short, it is hoped that this volume can be read with complete understanding by any student who is mathematically sufficiently mature and who has a familiarity with the standard notions of modern algebra. Our point of view in the present volume is basically the abstract conceptual one. However, from time to time we have deviated somewhat from this. Occasionally formal calculational methods yield sharper results. Moreover, the results of linear algebra are not an end in themselves but are essential tools for use in other branches of mathematics and its applications. It is therefore useful to have at hand methods which are constructive and which can be applied in numerical problems. These methods sometimes necessitate a somewhat lengthier discussion but we have felt that their presentation is justified on the grounds indicated. A stu dent well versed in abstract algebra will undoubtedly observe short cuts. Some of these have been indicated in footnotes. We have included a large number of exercises in the text.




抽象代数讲义


Book Description

著者译名:雅各布松。







Linear Algebra As An Introduction To Abstract Mathematics


Book Description

This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.




Abstract Algebra


Book Description

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.




Lectures on Linear Algebra


Book Description

Prominent Russian mathematician's concise, well-written exposition considers n-dimensional spaces, linear and bilinear forms, linear transformations, canonical form of an arbitrary linear transformation, and an introduction to tensors. While not designed as an introductory text, the book's well-chosen topics, brevity of presentation, and the author's reputation will recommend it to all students, teachers, and mathematicians working in this sector.




Lectures on Algebra


Book Description

This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel. Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more local rings and more algebraic geometry. Both books are based on the author's lectures at Purdue University over the last few years.




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




Advanced Linear Algebra


Book Description

Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra




A Course in Algebra


Book Description

Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.