Lectures on Cauchy's Problem in Linear Partial Differential Equations
Author : Jacques Hadamard
Publisher :
Page : 336 pages
File Size : 35,66 MB
Release : 1923
Category : Cauchy problem
ISBN :
Author : Jacques Hadamard
Publisher :
Page : 336 pages
File Size : 35,66 MB
Release : 1923
Category : Cauchy problem
ISBN :
Author : Grigoriĭ Ilʹich Eskin
Publisher : American Mathematical Soc.
Page : 432 pages
File Size : 44,93 MB
Release : 2011
Category : Mathematics
ISBN : 0821852841
This is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form. The first three chapters are on elementary distribution theory and Sobolev spaces. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory.
Author : Manuel Mañas
Publisher : CRC Press
Page : 452 pages
File Size : 11,68 MB
Release : 2024-07-12
Category : Mathematics
ISBN : 1040026427
Boundary value problems play a significant role in modeling systems characterized by established conditions at their boundaries. On the other hand, initial value problems hold paramount importance in comprehending dynamic processes and foreseeing future behaviors. The fusion of these two types of problems yields profound insights into the intricacies of the conduct exhibited by many physical and mathematical systems regulated by linear partial differential equations. Boundary Value Problems for Linear Partial Differential Equations provides students with the opportunity to understand and exercise the benefits of this fusion, equipping them with realistic, practical tools to study solvable linear models of electromagnetism, fluid dynamics, geophysics, optics, thermodynamics and specifically, quantum mechanics. Emphasis is devoted to motivating the use of these methods by means of concrete examples taken from physical models. Features No prerequisites apart from knowledge of differential and integral calculus and ordinary differential equations. Provides students with practical tools and applications Contains numerous examples and exercises to help readers understand the concepts discussed in the book.
Author : Andrei D. Polyanin
Publisher : CRC Press
Page : 1623 pages
File Size : 37,98 MB
Release : 2015-12-23
Category : Mathematics
ISBN : 1466581492
This second edition contains nearly 4,000 linear partial differential equations (PDEs) with solutions as well as analytical, symbolic, and numerical methods for solving linear equations. First-, second-, third-, fourth-, and higher-order linear equations and systems of coupled equations are considered. Equations of parabolic, mixed, and other types are discussed. New linear equations, exact solutions, transformations, and methods are described. Formulas for effective construction of solutions are given. Boundary value and eigenvalue problems are addressed. Symbolic and numerical methods for solving PDEs with Maple, Mathematica, and MATLAB are explored.
Author : Tatsuo Nishitani
Publisher : Springer
Page : 215 pages
File Size : 32,4 MB
Release : 2017-11-24
Category : Mathematics
ISBN : 3319676121
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pμj and Pμj , where iμj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Author : I. G. Petrovsky
Publisher : Courier Corporation
Page : 261 pages
File Size : 48,19 MB
Release : 2012-12-13
Category : Mathematics
ISBN : 0486155080
Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.
Author : Atul Kumar Razdan
Publisher : Springer Nature
Page : 558 pages
File Size : 19,53 MB
Release : 2022-04-02
Category : Mathematics
ISBN : 9811698651
The book serves as a primary textbook of partial differential equations (PDEs), with due attention to their importance to various physical and engineering phenomena. The book focuses on maintaining a balance between the mathematical expressions used and the significance they hold in the context of some physical problem. The book has wider outreach as it covers topics relevant to many different applications of ordinary differential equations (ODEs), PDEs, Fourier series, integral transforms, and applications. It also discusses applications of analytical and geometric methods to solve some fundamental PDE models of physical phenomena such as transport of mass, momentum, and energy. As far as possible, historical notes are added for most important developments in science and engineering. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
Author : Michiel Hazewinkel
Publisher : Springer Science & Business Media
Page : 540 pages
File Size : 34,95 MB
Release : 2013-12-01
Category : Mathematics
ISBN : 9400959885
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Author : Isaak Rubinstein
Publisher : Cambridge University Press
Page : 704 pages
File Size : 37,54 MB
Release : 1998-04-28
Category : Mathematics
ISBN : 9780521558464
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Author : Emmanuele DiBenedetto
Publisher : Springer Science & Business Media
Page : 434 pages
File Size : 25,32 MB
Release : 1994-12-22
Category : Mathematics
ISBN : 9780817637088
This text is meant to be a self-contained, elementary introduction to Partial Differential Equations, assuming only advanced differential calculus and some basic LP theory. Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. Chapter I is focused on the Cauchy-Kowaleski theorem. We discuss the notion of characteristic surfaces and use it to classify partial differential equations. The discussion grows out of equations of second order in two variables to equations of second order in N variables to p.d.e.'s of any order in N variables. In Chapters II and III we study the Laplace equation and connected elliptic theory. The existence of solutions for the Dirichlet problem is proven by the Perron method. This method clarifies the structure ofthe sub(super)harmonic functions and is closely related to the modern notion of viscosity solution. The elliptic theory is complemented by the Harnack and Liouville theorems, the simplest version of Schauder's estimates and basic LP -potential estimates. Then, in Chapter III, the Dirichlet and Neumann problems, as well as eigenvalue problems for the Laplacian, are cast in terms of integral equations. This requires some basic facts concerning double layer potentials and the notion of compact subsets of LP, which we present.