Elementary Particle Physics


Book Description

This book grew-how could it be otherwise?-out of a series oflectures which the author held at the University of Heidelberg. The purpose ofthese lectures was to give an introduction to the phenomenology of elementary particles for students both of theoretical and experimental orientation. With the present book the author has set himself the same aim. The reader is assumed to be familiar with ordinary nonrelativistic quantum mechanics as presented, e.g., in the following books: Quantum Mechanics, by L.1. Schiff (McGraw-Hill, New York, 1955); Quantum Mechanics, Vol. I, by K. Gottfried (W.A. Benjamin, Reading, Ma., 1966). The setup of the present book is as follows. In the first part we present some basic general principles and concepts which are used in elementary particle physics. The reader is supposed to learn here the "language" of particle physics. An introductory chapter deals with special relativity, of such funda mental importance for particle physics, which most ofthe time is high energy, i.e., highly relativistic physics. Further chapters of this first part deal with the Dirac equation, with the theory of quantized fields, and with the general definitions of the scattering and transition matrices and the cross-sections.




Elementary Particles and the Laws of Physics


Book Description

A fascinating and accessible book by Nobel laureates Richard Feynman and Steven Weinberg.







Symposia on Theoretical Physics 4


Book Description

The Third Anniversary Symposium, held in January 1965, was devoted mainly to various topics in elementary particle physics, with a few lectures on many-body problems and a short supple mentary program in mathematics. * In the Introductory Address Professor V. Weisskopf, Director General of CERN, Geneva, presented a broad survey of the then current scene in elementary particle physics, the most dominant trend in which is the concept of symmetry. He traced the use of the concept of rotational invariance and symmetry under permutation of identical objects in the realm of atomic spectra and how, with the inclusion of isotopic spin, such use was extended to the study of properties of nuclei. Professor Weisskopf also described how, in ad dition, elementary particles are characterized by a new quantum number, the hypercharge, which, with isotopic spin, is part of a wider symmetry SU(3). He mentioned three classes of experiments at CERN, one in search of quarks, one to investigate the existence of vector bosons suggested by theories as possible mediators of weak interaction, and one to test the existence of cosmic forces to explain C P or T violation. The quotations from Newton's Opticks at the beginning and the end of the lecture were strikingly relevant. Two lectures dealt with the application of SU(3) symmetry to weak and strong interactions, respectively. Ph. Meyer of the Uni versity of Paris, Orsay summarized his work on the conserved vector current hypothesis in relation to broken symmetries.