Lectures on Financial Mathematics


Book Description

This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage," the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged to work through the exercises throughout the book. The intended audience is students and other readers who have an undergraduate background in mathematics, including exposure to linear algebra, some advanced calculus, and basic probability. The book has been used in earlier forms with students in the MS program in Financial Mathematics at Florida State University, and is a suitable text for students at that level. Students who seek a second look at these topics may also find this book useful. Table of Contents: Overture: Single-Period Models / The General Discrete Model / The Fundamental Theorems of Asset Pricing / Forwards and Futures / Incomplete Markets




Mathematical Models of Financial Derivatives


Book Description

This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.




Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications


Book Description

The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.




Paris-Princeton Lectures on Mathematical Finance 2002


Book Description

The Paris-Princeton Lectures in Financial Mathematics, of which this is the first volume, will, on an annual basis, publish cutting-edge research in self-contained, expository articles from outstanding - established or upcoming! - specialists. The aim is to produce a series of articles that can serve as an introductory reference for research in the field. It arises as a result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with articles by P. Bank/H. Föllmer, F. Baudoin, L.C.G. Rogers, and M. Soner/N. Touzi.




Financial Mathematics


Book Description

Financial Mathematics is an exciting, emerging field of application. The five sets of course notes in this book provide a bird's eye view of the current "state of the art" and directions of research. For graduate students it will therefore serve as an introduction to the field while reseachers will find it a compact source of reference. The reader is expected to have a good knowledge of the basic mathematical tools corresponding to an introductory graduate level, and sufficient familiarity with probabilistic methods, in particular stochastic analysis. B. Biais, J.C. Rochet: Risk-sharing, adverse selection and market structure.- T. Björk: Interest-rate theory.- J. Cvitanic: Optimal trading under constraints.- N. El Karoui, M.C. Quenez: Nonlinear pricing theory and backward stochastic differential equations.- E. Jouini: Market imperfections, equilibrium and arbitrage.




Lectures On Mathematical Finance And Related Topics


Book Description

Rigorous mathematical finance relies strongly on two additional fields: optimal stopping and stochastic analysis. This book is the first one which presents not only main results in the mathematical finance but also these 'related topics' with all proofs and in a self-contained form. The book treats both discrete and continuous time mathematical finance. Some topics, such as Israeli (game) contingent claims, and several proofs have not appeared before in a self-contained book form. The book contains exercises with solutions at the end of it and it can be used for a yearlong advanced graduate course for mathematical students.




Lectures on Financial Mathematics


Book Description

This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage", the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged to work through the exercises throughout the book. The intended audience is students and other readers who have an undergraduate background in mathematics, including exposure to linear algebra, some advanced calculus, and basic probability. The book has been used in earlier forms with students in the MS program in Financial Mathematics at Florida State University, and is a suitable text for students at that level. Students who seek a second look at these topics may also find this book useful. Table of Contents: Overture: Single-Period Models / The General Discrete Model / The Fundamental Theorems of Asset Pricing / Forwards and Futures / Incomplete Markets




Financial Mathematics, Volatility and Covariance Modelling


Book Description

This book provides an up-to-date series of advanced chapters on applied financial econometric techniques pertaining the various fields of commodities finance, mathematics & stochastics, international macroeconomics and financial econometrics. Financial Mathematics, Volatility and Covariance Modelling: Volume 2 provides a key repository on the current state of knowledge, the latest debates and recent literature on financial mathematics, volatility and covariance modelling. The first section is devoted to mathematical finance, stochastic modelling and control optimization. Chapters explore the recent financial crisis, the increase of uncertainty and volatility, and propose an alternative approach to deal with these issues. The second section covers financial volatility and covariance modelling and explores proposals for dealing with recent developments in financial econometrics This book will be useful to students and researchers in applied econometrics; academics and students seeking convenient access to an unfamiliar area. It will also be of great interest established researchers seeking a single repository on the current state of knowledge, current debates and relevant literature.




Financial Mathematics, Derivatives and Structured Products


Book Description

This book introduces readers to the financial markets, derivatives, structured products and how the products are modelled and implemented by practitioners. In addition, it equips readers with the necessary knowledge of financial markets needed in order to work as product structurers, traders, sales or risk managers. As the book seeks to unify the derivatives modelling and the financial engineering practice in the market, it will be of interest to financial practitioners and academic researchers alike. Further, it takes a different route from the existing financial mathematics books, and will appeal to students and practitioners with or without a scientific background. The book can also be used as a textbook for the following courses: • Financial Mathematics (undergraduate level) • Stochastic Modelling in Finance (postgraduate level) • Financial Markets and Derivatives (undergraduate level) • Structured Products and Solutions (undergraduate/postgraduate level)




Mathematics for Finance


Book Description

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.